Three-dimensional dipole momentum analog based on L-shape metasurface
The achievement of a flat metasurface has realized extraordinary control over light–matter interaction at the nanoscale, enabling widespread use in imaging, holography, and biophotonics. However, three-dimensional metasurfaces with the potential to provide additional light–matter manipulation flexib...
Saved in:
Published in | Applied physics letters Vol. 122; no. 14 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
03.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The achievement of a flat metasurface has realized extraordinary control over light–matter interaction at the nanoscale, enabling widespread use in imaging, holography, and biophotonics. However, three-dimensional metasurfaces with the potential to provide additional light–matter manipulation flexibility attract only little interest. Here, we demonstrate a three-dimensional metasurface scheme capable of providing dual phase control through out-of-plane plasmonic resonance of L-shape antennas. Under circularly polarized excitation at a specific wavelength, the L-shape antennas with rotating orientation angle act as spatially variant three-dimensional tilted dipoles and are able to generate desire phase delay for different polarization components. Generalized Snell's law is achieved for both in-plane and out-of-plane dipole components through arranging such L-shape antennas into arrays. These three-dimensional metasurfaces suggest a route for wavefront modulation and a variety of nanophotonic applications. |
---|---|
AbstractList | The achievement of a flat metasurface has realized extraordinary control over light–matter interaction at the nanoscale, enabling widespread use in imaging, holography, and biophotonics. However, three-dimensional metasurfaces with the potential to provide additional light–matter manipulation flexibility attract only little interest. Here, we demonstrate a three-dimensional metasurface scheme capable of providing dual phase control through out-of-plane plasmonic resonance of L-shape antennas. Under circularly polarized excitation at a specific wavelength, the L-shape antennas with rotating orientation angle act as spatially variant three-dimensional tilted dipoles and are able to generate desire phase delay for different polarization components. Generalized Snell's law is achieved for both in-plane and out-of-plane dipole components through arranging such L-shape antennas into arrays. These three-dimensional metasurfaces suggest a route for wavefront modulation and a variety of nanophotonic applications. |
Author | Zentgraf, Thomas Huang, Lingling Li, Tianyou Wang, Yongtian Chen, Yanjie |
Author_xml | – sequence: 1 givenname: Tianyou surname: Li fullname: Li, Tianyou organization: School of Optoelectronics, Beijing Institute of Technology – sequence: 2 givenname: Yanjie surname: Chen fullname: Chen, Yanjie organization: School of Optoelectronics, Beijing Institute of Technology – sequence: 3 givenname: Yongtian surname: Wang fullname: Wang, Yongtian organization: School of Optoelectronics, Beijing Institute of Technology – sequence: 4 givenname: Thomas surname: Zentgraf fullname: Zentgraf, Thomas organization: Department of Physics, University of Paderborn – sequence: 5 givenname: Lingling surname: Huang fullname: Huang, Lingling organization: School of Optoelectronics, Beijing Institute of Technology |
BookMark | eNp90F1LwzAUBuAgE9ymF_6DglcKnUmzpOmljPkBA2_mdThLTl1H29SkFfz3RjYVVLwK5_Ccl_BOyKh1LRJyzuiMUcmvxYyyecZVcUTGjOZ5yhlTIzKmlPJUFoKdkEkIuziKjPMxWa63HjG1VYNtqFwLdWKrztWYNC6u-qFJIC7dc7KBgDZxbbJKwxa6CLCHMPgSDJ6S4xLqgGeHd0qebpfrxX26erx7WNysUsML3qdMohIyRyatsZkwXAAwlSEYxZkCLkEYG4UsTM43tKSCIhMWQGXzkpuMT8nFPrfz7mXA0OudG3z8X9BZXgjFWFHIqC73yngXgsdSd75qwL9pRvVHS1roQ0vRXv-wpuqhj030Hqr6z4ur_UX4lF_xr85_Q93Z8j_8O_kd61yGGg |
CODEN | APPLAB |
CitedBy_id | crossref_primary_10_1364_OE_501281 |
Cites_doi | 10.1038/s41467-020-20283-0 10.1038/ncomms14606 10.1021/nl303031j 10.1038/lsa.2017.158 10.1073/pnas.1210686109 10.1126/sciadv.abg0363 10.1126/sciadv.aar6768 10.1126/science.1177031 10.1038/s41467-017-00164-9 10.1038/s41467-020-17390-3 10.1038/ncomms3808 10.1021/acs.nanolett.6b00732 10.1126/science.aaf6644 10.1021/nl303445u 10.1126/science.aaf3417 10.1126/science.1210713 10.1038/lsa.2015.81 10.1038/lsa.2016.76 10.1038/nphoton.2014.247 10.1038/s41565-017-0052-4 10.1038/s41467-022-29374-6 10.1364/OPTICA.4.000139 10.1038/s41928-020-0380-5 10.1002/adfm.202100689 10.1038/nnano.2015.186 10.1002/adma.201300223 10.1002/adma.201707499 10.1038/s41467-018-06858-y 10.1002/adma.201806479 10.1515/nanoph-2017-0118 10.1021/acs.nanolett.5b03026 10.1002/lpor.201900179 |
ContentType | Journal Article |
Copyright | Author(s) 2023 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2023 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0142389 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 10_1063_5_0142389 apl |
GrantInformation_xml | – fundername: Beijing Outstanding Young Scientist Program grantid: BJJWZYJH01201910007022 – fundername: Ministry of Science and technology,China grantid: 2021YFB2802200 – fundername: Beijing Municipal Science and Technology Commission grantid: Z211100004821009 funderid: 10.13039/501100009592 – fundername: National Natural Science Foundation of China grantid: U21A20140; 92050117 funderid: 10.13039/501100001809 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 53G AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c393t-16e8567e16dcd25c35aa182eac8318a36a5cd85669c73b0f050e15daa824f3c23 |
ISSN | 0003-6951 |
IngestDate | Sun Jun 29 16:54:09 EDT 2025 Tue Jul 01 01:08:28 EDT 2025 Thu Apr 24 23:11:01 EDT 2025 Fri Jun 21 00:19:00 EDT 2024 Tue Jul 04 19:18:42 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c393t-16e8567e16dcd25c35aa182eac8318a36a5cd85669c73b0f050e15daa824f3c23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9422-0888 0000-0002-8662-1101 0000-0002-3647-2128 0000-0002-5878-5942 |
PQID | 2795811996 |
PQPubID | 2050678 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2795811996 scitation_primary_10_1063_5_0142389 crossref_primary_10_1063_5_0142389 crossref_citationtrail_10_1063_5_0142389 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230403 2023-04-03 |
PublicationDateYYYYMMDD | 2023-04-03 |
PublicationDate_xml | – month: 04 year: 2023 text: 20230403 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Applied physics letters |
PublicationYear | 2023 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Zhu, Chen, Zaidi, Huang, Khorasaninejad, Sanjeev, Qiu, Capasso (c13) 2017 Khorasaninejad, Chen, Devlin, Oh, Zhu, Capasso (c23) 2016 Arbabi, Horie, Bagheri, Faraon (c14) 2015 Liu, Cui, Xu, Bao, Du, Wan, Tang, Ouyang, Zhou, Yuan, Ma, Jiang, Han, Zhang, Cheng (c21) 2016 Huang, Zhang, Zentgraf (c6) 2018 Kats, Genevet, Aoust, Yu, Blanchard, Aieta, Gaburro, Capasso (c2) 2012 Duan, Kamin, Liu (c10) 2017 Gansel, Thiel, Rill, Decker, Bade, Saile, von Freymann, Linden, Wegener (c26) 2009 Cui, Liu, Li, Shen, Xia, Li, Gong, Li, Wang, Li, Yang, Li, Gu (c27) 2015 Maguid, Yulevich, Veksler, Kleiner, Brongersma, Hasman (c12) 2016 Genevet, Capasso, Aieta, Khorasaninejad, Devlin (c24) 2017 Li, Yu, Zhang, Liu (c9) 2020 McDonnell, Deng, Sideris, Ellenbogen, Li (c17) 2021 Zang, Dong, Yue, Zhang, Xu, Song, Chen, Chen, Buller, Zhu, Zhuang, Chu, Zhang, Chen (c25) 2018 Pan, Liu, Zhu, Du, Gu, Li (c29) 2021 Huang, Chen, Mühlenbernd, Li, Bai, Tan, Jin, Zentgraf, Zhang (c3) 2012 Abdollahramezani, Hemmatyar, Taghinejad, Taghinejad, Krasnok, Eftekhar, Teichrib, Deshmukh, El-Sayed, Pop, Wuttig, Alù, Cai, Adibi (c20) 2022 Wang, Wu, Su, Lai, Chen, Kuo, Chen, Chen, Huang, Wang, Lin, Kuan, Li, Wang, Zhu, Tsai (c16) 2018 Meinzer, Barnes, Hooper (c22) 2014 Zheng, Dai, Li, Ye, Xiong, Liu, Zheng, Zhang (c19) 2021 Tsai, Chung, Hsiao, Chen, Lin, Wu, Sun, Wang, Misawa, Tsai (c32) 2019 Yu, Aieta, Genevet, Kats, Gaburro, Capasso (c5) 2012 Huang, Chen, Mühlenbernd, Zhang, Chen, Bai, Tan, Jin, Cheah, Qiu, Li, Zentgraf, Zhang (c4) 2013 Li, Jun Cui, Ji, Liu, Ding, Wan, Bo Li, Jiang, Qiu, Zhang (c8) 2017 Xiong, Jiang, Hu, Peng, Wang (c31) 2013 Folland, Fali, White, Matson, Liu, Aghamiri, Edgar, Haglund, Abate, Caldwell (c15) 2018 Yu, Genevet, Kats, Aieta, Tetienne, Capasso, Gaburro (c1) 2011 Pan, Li, Liu, Zhu, Zhu, Li, Chen, Gu, Li (c28) 2020 Dabidian, Dutta-Gupta, Kholmanov, Lai, Lu, Lee, Jin, Trendafilov, Khanikaev, Fallahazad, Tutuc, Belkin, Shvets (c7) 2016 Verre, Svedendahl, Länk, Yang, Zengin, Antosiewicz, Käll (c30) 2016 Li, Kamin, Zheng, Neubrech, Zhang, Liu (c11) 2018 Zhang, Jiang, Jiang, Wang, Tian, Bai, Luo, Sun, Luo, Qiu, Cui (c18) 2020 (2023081106021891600_c12) 2016; 352 (2023081106021891600_c31) 2013; 25 (2023081106021891600_c14) 2015; 10 (2023081106021891600_c9) 2020; 11 (2023081106021891600_c26) 2009; 325 (2023081106021891600_c15) 2018; 9 (2023081106021891600_c21) 2016; 5 (2023081106021891600_c18) 2020; 3 (2023081106021891600_c20) 2022; 13 (2023081106021891600_c17) 2021; 12 (2023081106021891600_c1) 2011; 334 (2023081106021891600_c8) 2017; 8 (2023081106021891600_c32) 2019; 31 (2023081106021891600_c30) 2016; 16 (2023081106021891600_c27) 2015; 4 (2023081106021891600_c25) 2018; 30 (2023081106021891600_c6) 2018; 7 (2023081106021891600_c7) 2016; 16 (2023081106021891600_c22) 2014; 8 (2023081106021891600_c23) 2016; 352 (2023081106021891600_c29) 2021; 31 (2023081106021891600_c2) 2012; 109 (2023081106021891600_c5) 2012; 12 (2023081106021891600_c13) 2017; 7 (2023081106021891600_c10) 2017; 8 (2023081106021891600_c19) 2021; 7 (2023081106021891600_c16) 2018; 13 (2023081106021891600_c3) 2012; 12 (2023081106021891600_c28) 2020; 14 (2023081106021891600_c4) 2013; 4 (2023081106021891600_c11) 2018; 4 (2023081106021891600_c24) 2017; 4 |
References_xml | – start-page: 30 year: 2021 ident: c17 publication-title: Nat. Commun. – start-page: 333 year: 2011 ident: c1 publication-title: Science – start-page: 5750 year: 2012 ident: c3 publication-title: Nano Lett. – start-page: 889 year: 2014 ident: c22 publication-title: Nat. Photonics – start-page: 170499 year: 2018 ident: c25 publication-title: Adv. Mater. – start-page: 1900179 year: 2020 ident: c28 publication-title: Laser Photonics Rev. – start-page: 1696 year: 2022 ident: c20 publication-title: Nat. Commun. – start-page: 3994 year: 2013 ident: c31 publication-title: Adv. Mater. – start-page: 17158 year: 2017 ident: c13 publication-title: Light: Sci. Appl. – start-page: 4371 year: 2018 ident: c15 publication-title: Nat. Commun. – start-page: 1202 year: 2016 ident: c12 publication-title: Science – start-page: 6768 year: 2018 ident: c11 publication-title: Sci. Adv. – start-page: 1190 year: 2016 ident: c23 publication-title: Science – start-page: 12364 year: 2012 ident: c2 publication-title: Proc. Natl. Acad. Sci. U. S. A. – start-page: 3607 year: 2016 ident: c7 publication-title: Nano Lett. – start-page: 1806479 year: 2019 ident: c32 publication-title: Adv. Mater. – start-page: 937 year: 2015 ident: c14 publication-title: Nat. Nanotechnol. – start-page: 3574 year: 2020 ident: c9 publication-title: Nat. Commun. – start-page: 14606 year: 2017 ident: c10 publication-title: Nat. Commun. – start-page: 165 year: 2020 ident: c18 publication-title: Nat. Electron. – start-page: e308 year: 2015 ident: c27 publication-title: Light. Sci. Appl. – start-page: 1513 year: 2009 ident: c26 publication-title: Science – start-page: 1169 year: 2018 ident: c6 publication-title: Nanophotonics – start-page: 2100689 year: 2021 ident: c29 publication-title: Adv. Funct. Mater. – start-page: 6328 year: 2012 ident: c5 publication-title: Nano Lett. – start-page: 197 year: 2017 ident: c8 publication-title: Nat. Commun. – start-page: 227 year: 2018 ident: c16 publication-title: Nat. Nanotechnol. – start-page: e16076 year: 2016 ident: c21 publication-title: Light. Sci. Appl. – start-page: 98 year: 2016 ident: c30 publication-title: Nano Lett. – start-page: 139 year: 2017 ident: c24 publication-title: Optica – start-page: 2808 year: 2013 ident: c4 publication-title: Nat. Commun. – start-page: eabg0363 year: 2021 ident: c19 publication-title: Sci. Adv. – volume: 12 start-page: 30 year: 2021 ident: 2023081106021891600_c17 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20283-0 – volume: 8 start-page: 14606 year: 2017 ident: 2023081106021891600_c10 publication-title: Nat. Commun. doi: 10.1038/ncomms14606 – volume: 12 start-page: 5750 year: 2012 ident: 2023081106021891600_c3 publication-title: Nano Lett. doi: 10.1021/nl303031j – volume: 7 start-page: 17158 year: 2017 ident: 2023081106021891600_c13 publication-title: Light: Sci. Appl. doi: 10.1038/lsa.2017.158 – volume: 109 start-page: 12364 year: 2012 ident: 2023081106021891600_c2 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1210686109 – volume: 7 start-page: eabg0363 year: 2021 ident: 2023081106021891600_c19 publication-title: Sci. Adv. doi: 10.1126/sciadv.abg0363 – volume: 4 start-page: 6768 year: 2018 ident: 2023081106021891600_c11 publication-title: Sci. Adv. doi: 10.1126/sciadv.aar6768 – volume: 325 start-page: 1513 year: 2009 ident: 2023081106021891600_c26 publication-title: Science doi: 10.1126/science.1177031 – volume: 8 start-page: 197 year: 2017 ident: 2023081106021891600_c8 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00164-9 – volume: 11 start-page: 3574 year: 2020 ident: 2023081106021891600_c9 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17390-3 – volume: 4 start-page: 2808 year: 2013 ident: 2023081106021891600_c4 publication-title: Nat. Commun. doi: 10.1038/ncomms3808 – volume: 16 start-page: 3607 year: 2016 ident: 2023081106021891600_c7 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00732 – volume: 352 start-page: 1190 year: 2016 ident: 2023081106021891600_c23 publication-title: Science doi: 10.1126/science.aaf6644 – volume: 12 start-page: 6328 year: 2012 ident: 2023081106021891600_c5 publication-title: Nano Lett. doi: 10.1021/nl303445u – volume: 352 start-page: 1202 year: 2016 ident: 2023081106021891600_c12 publication-title: Science doi: 10.1126/science.aaf3417 – volume: 334 start-page: 333 year: 2011 ident: 2023081106021891600_c1 publication-title: Science doi: 10.1126/science.1210713 – volume: 4 start-page: e308 year: 2015 ident: 2023081106021891600_c27 publication-title: Light. Sci. Appl. doi: 10.1038/lsa.2015.81 – volume: 5 start-page: e16076 year: 2016 ident: 2023081106021891600_c21 publication-title: Light. Sci. Appl. doi: 10.1038/lsa.2016.76 – volume: 8 start-page: 889 year: 2014 ident: 2023081106021891600_c22 publication-title: Nat. Photonics doi: 10.1038/nphoton.2014.247 – volume: 13 start-page: 227 year: 2018 ident: 2023081106021891600_c16 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-017-0052-4 – volume: 13 start-page: 1696 year: 2022 ident: 2023081106021891600_c20 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29374-6 – volume: 4 start-page: 139 year: 2017 ident: 2023081106021891600_c24 publication-title: Optica doi: 10.1364/OPTICA.4.000139 – volume: 3 start-page: 165 year: 2020 ident: 2023081106021891600_c18 publication-title: Nat. Electron. doi: 10.1038/s41928-020-0380-5 – volume: 31 start-page: 2100689 year: 2021 ident: 2023081106021891600_c29 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202100689 – volume: 10 start-page: 937 year: 2015 ident: 2023081106021891600_c14 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.186 – volume: 25 start-page: 3994 year: 2013 ident: 2023081106021891600_c31 publication-title: Adv. Mater. doi: 10.1002/adma.201300223 – volume: 30 start-page: 170499 year: 2018 ident: 2023081106021891600_c25 publication-title: Adv. Mater. doi: 10.1002/adma.201707499 – volume: 9 start-page: 4371 year: 2018 ident: 2023081106021891600_c15 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06858-y – volume: 31 start-page: 1806479 year: 2019 ident: 2023081106021891600_c32 publication-title: Adv. Mater. doi: 10.1002/adma.201806479 – volume: 7 start-page: 1169 year: 2018 ident: 2023081106021891600_c6 publication-title: Nanophotonics doi: 10.1515/nanoph-2017-0118 – volume: 16 start-page: 98 year: 2016 ident: 2023081106021891600_c30 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03026 – volume: 14 start-page: 1900179 year: 2020 ident: 2023081106021891600_c28 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201900179 |
SSID | ssj0005233 |
Score | 2.423738 |
Snippet | The achievement of a flat metasurface has realized extraordinary control over light–matter interaction at the nanoscale, enabling widespread use in imaging,... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Antenna arrays Antennas Applied physics Circular polarization Dipole moments Metasurfaces Phase control Snells law Wave fronts |
Title | Three-dimensional dipole momentum analog based on L-shape metasurface |
URI | http://dx.doi.org/10.1063/5.0142389 https://www.proquest.com/docview/2795811996 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagE2IcJhggCgNZwAGpCkvs2EmO0-g0oWwg0Uodl8hN7FK0JVWb7bC_nufY-QXVBFyiKrJc673PL5_tz-8h9N4NZOBHEpYlXPmOn2bCCUMVObq6thIiIqSqPHd2zk-n_ucZm7U1W6vbJeX8Y3q79V7J_3gV3oFf9S3Zf_Bs0ym8gN_gX3iCh-H5lz5eS-lkOkG_Sa4xypYrLRe80nkVSq07zkVVahK-VZk-F4idzQ-xkrpwtN4bVCLtSYFqTmr2Ozajy-qyT0O746VxLwSQ4roVBpjIdSHyn8v2pEfki9FFkS_KDv6-w6AWa6F-UybZTQdCK60KbWFSnyb1FA1fzdh64ZY6PLIZZaWJsG6gN0Zt0K1DMCFdrPlbYzuQKXCIzrIKFNDUHernzz7_kpxM4ziZjGeT-2iHwMKBDNDO0aez-FtH9kNpXUVRD63ONsXpYdN1n6O0C4-HwEqMQKLDQSaP0Z5dPOAjg4Qn6J7M99GjTkrJffTAmucpGv-BDmzQgWt0YIMOXKEDFzm26MAddDxD05Px5PjUsUUznJRGtHQ8LkPGA-nxLM0ISykTAtaQ8H0NIXwLyoVOBwEkPkoDOneVy1zpsUyIkPiKpoQ-R4O8yOULhMOQ-inQTSVgPnskmAsg5zCbmad45nvuEH2ozZTUhtGFTS6TStnAacISa9Ehets0XZk0KtsaHdS2Tuws2yQkiFjoaa38EL1r7H9XJ1ta3RTrtkWyytTLu__qFdptUX-ABuX6Wr4G8lnO31g8_QINOYYd |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+dipole+momentum+analog+based+on+L-shape+metasurface&rft.jtitle=Applied+physics+letters&rft.au=Li%2C+Tianyou&rft.au=Chen%2C+Yanjie&rft.au=Wang+Yongtian&rft.au=Zentgraf%2C+Thomas&rft.date=2023-04-03&rft.pub=American+Institute+of+Physics&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=122&rft.issue=14&rft_id=info:doi/10.1063%2F5.0142389&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |