Three-dimensional dipole momentum analog based on L-shape metasurface

The achievement of a flat metasurface has realized extraordinary control over light–matter interaction at the nanoscale, enabling widespread use in imaging, holography, and biophotonics. However, three-dimensional metasurfaces with the potential to provide additional light–matter manipulation flexib...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 122; no. 14
Main Authors Li, Tianyou, Chen, Yanjie, Wang, Yongtian, Zentgraf, Thomas, Huang, Lingling
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 03.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The achievement of a flat metasurface has realized extraordinary control over light–matter interaction at the nanoscale, enabling widespread use in imaging, holography, and biophotonics. However, three-dimensional metasurfaces with the potential to provide additional light–matter manipulation flexibility attract only little interest. Here, we demonstrate a three-dimensional metasurface scheme capable of providing dual phase control through out-of-plane plasmonic resonance of L-shape antennas. Under circularly polarized excitation at a specific wavelength, the L-shape antennas with rotating orientation angle act as spatially variant three-dimensional tilted dipoles and are able to generate desire phase delay for different polarization components. Generalized Snell's law is achieved for both in-plane and out-of-plane dipole components through arranging such L-shape antennas into arrays. These three-dimensional metasurfaces suggest a route for wavefront modulation and a variety of nanophotonic applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0142389