Semi-Supervised Nearest Mean Classification Through a Constrained Log-Likelihood
We cast a semi-supervised nearest mean classifier, previously introduced by the first author, in a more principled log-likelihood formulation that is subject to constraints. This, in turn, leads us to make the important suggestion to not only investigate error rates of semi-supervised learners but a...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 26; no. 5; pp. 995 - 1006 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.05.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We cast a semi-supervised nearest mean classifier, previously introduced by the first author, in a more principled log-likelihood formulation that is subject to constraints. This, in turn, leads us to make the important suggestion to not only investigate error rates of semi-supervised learners but also consider the risk they originally aim to optimize. We demonstrate empirically that in terms of classification error, mixed results are obtained when comparing supervised to semi-supervised nearest mean classification, while in terms of log-likelihood on the test set, the semi-supervised method consistently outperforms its supervised counterpart. Comparisons to self-learning, a standard approach in semi-supervised learning, are included to further clarify the way, in which our constrained nearest mean classifier improves over regular, supervised nearest mean classification. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2162-237X 2162-2388 2162-2388 |
DOI: | 10.1109/TNNLS.2014.2329567 |