The generalized Thomas-Fermi singular boundary value problems for neutral atoms

This paper presents an upper and lower solution theory for singular boundary value problems modelling the Thomas–Fermi equation, subject to a boundary condition corresponding to the neutral atom with Bohr radius equal to its existence interval. Furthermore, we derive sufficient conditions for the ex...

Full description

Saved in:
Bibliographic Details
Published inMathematical methods in the applied sciences Vol. 29; no. 1; pp. 49 - 66
Main Authors Agarwal, Ravi P., O'Regan, Donal, Palamides, Panos K.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 10.01.2006
Wiley
Teubner
Subjects
Online AccessGet full text
ISSN0170-4214
1099-1476
DOI10.1002/mma.664

Cover

Loading…
More Information
Summary:This paper presents an upper and lower solution theory for singular boundary value problems modelling the Thomas–Fermi equation, subject to a boundary condition corresponding to the neutral atom with Bohr radius equal to its existence interval. Furthermore, we derive sufficient conditions for the existence–construction of the above‐mentioned upper–lower solutions. Copyright © 2005 John Wiley & Sons, Ltd.
Bibliography:ark:/67375/WNG-5R6JBG44-9
ArticleID:MMA664
istex:E32C7AD335D5362A6ED96251316E6586D479A924
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.664