Large scale ab initio modeling of structurally uncharacterized antimicrobial peptides reveals known and novel folds

Antimicrobial resistance within a wide range of infectious agents is a severe and growing public health threat. Antimicrobial peptides (AMPs) are among the leading alternatives to current antibiotics, exhibiting broad spectrum activity. Their activity is determined by numerous properties such as cat...

Full description

Saved in:
Bibliographic Details
Published inProteins, structure, function, and bioinformatics Vol. 86; no. 5; pp. 548 - 565
Main Authors Kozic, Mara, Fox, Stephen J., Thomas, Jens M., Verma, Chandra S., Rigden, Daniel J.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Antimicrobial resistance within a wide range of infectious agents is a severe and growing public health threat. Antimicrobial peptides (AMPs) are among the leading alternatives to current antibiotics, exhibiting broad spectrum activity. Their activity is determined by numerous properties such as cationic charge, amphipathicity, size, and amino acid composition. Currently, only around 10% of known AMP sequences have experimentally solved structures. To improve our understanding of the AMP structural universe we have carried out large scale ab initio 3D modeling of structurally uncharacterized AMPs that revealed similarities between predicted folds of the modeled sequences and structures of characterized AMPs. Two of the peptides whose models matched known folds are Lebocin Peptide 1A (LP1A) and Odorranain M, predicted to form β‐hairpins but, interestingly, to lack the intramolecular disulfide bonds, cation‐π or aromatic interactions that generally stabilize such AMP structures. Other examples include Ponericin Q42, Latarcin 4a, Kassinatuerin 1, Ceratotoxin D, and CPF‐B1 peptide, which have α‐helical folds, as well as mixed αβ folds of human Histatin 2 peptide and Garvicin A which are, to the best of our knowledge, the first linear αββ fold AMPs lacking intramolecular disulfide bonds. In addition to fold matches to experimentally derived structures, unique folds were also obtained, namely for Microcin M and Ipomicin. These results help in understanding the range of protein scaffolds that naturally bear antimicrobial activity and may facilitate protein design efforts towards better AMPs.
AbstractList Antimicrobial resistance within a wide range of infectious agents is a severe and growing public health threat. Antimicrobial peptides (AMPs) are among the leading alternatives to current antibiotics, exhibiting broad spectrum activity. Their activity is determined by numerous properties such as cationic charge, amphipathicity, size, and amino acid composition. Currently, only around 10% of known AMP sequences have experimentally solved structures. To improve our understanding of the AMP structural universe we have carried out large scale ab initio 3D modeling of structurally uncharacterized AMPs that revealed similarities between predicted folds of the modeled sequences and structures of characterized AMPs. Two of the peptides whose models matched known folds are Lebocin Peptide 1A (LP1A) and Odorranain M, predicted to form β‐hairpins but, interestingly, to lack the intramolecular disulfide bonds, cation‐π or aromatic interactions that generally stabilize such AMP structures. Other examples include Ponericin Q42, Latarcin 4a, Kassinatuerin 1, Ceratotoxin D, and CPF‐B1 peptide, which have α‐helical folds, as well as mixed αβ folds of human Histatin 2 peptide and Garvicin A which are, to the best of our knowledge, the first linear αββ fold AMPs lacking intramolecular disulfide bonds. In addition to fold matches to experimentally derived structures, unique folds were also obtained, namely for Microcin M and Ipomicin. These results help in understanding the range of protein scaffolds that naturally bear antimicrobial activity and may facilitate protein design efforts towards better AMPs.
Abstract Antimicrobial resistance within a wide range of infectious agents is a severe and growing public health threat. Antimicrobial peptides (AMPs) are among the leading alternatives to current antibiotics, exhibiting broad spectrum activity. Their activity is determined by numerous properties such as cationic charge, amphipathicity, size, and amino acid composition. Currently, only around 10% of known AMP sequences have experimentally solved structures. To improve our understanding of the AMP structural universe we have carried out large scale ab initio 3D modeling of structurally uncharacterized AMPs that revealed similarities between predicted folds of the modeled sequences and structures of characterized AMPs. Two of the peptides whose models matched known folds are Lebocin Peptide 1A (LP1A) and Odorranain M, predicted to form β‐hairpins but, interestingly, to lack the intramolecular disulfide bonds, cation‐π or aromatic interactions that generally stabilize such AMP structures. Other examples include Ponericin Q42, Latarcin 4a, Kassinatuerin 1, Ceratotoxin D, and CPF‐B1 peptide, which have α‐helical folds, as well as mixed αβ folds of human Histatin 2 peptide and Garvicin A which are, to the best of our knowledge, the first linear αββ fold AMPs lacking intramolecular disulfide bonds. In addition to fold matches to experimentally derived structures, unique folds were also obtained, namely for Microcin M and Ipomicin. These results help in understanding the range of protein scaffolds that naturally bear antimicrobial activity and may facilitate protein design efforts towards better AMPs.
Author Kozic, Mara
Rigden, Daniel J.
Thomas, Jens M.
Fox, Stephen J.
Verma, Chandra S.
Author_xml – sequence: 1
  givenname: Mara
  surname: Kozic
  fullname: Kozic, Mara
  organization: Agency for Science, Technology and Research (ASTAR), Bioinformatics Institute
– sequence: 2
  givenname: Stephen J.
  surname: Fox
  fullname: Fox, Stephen J.
  organization: Agency for Science, Technology and Research (ASTAR), Bioinformatics Institute
– sequence: 3
  givenname: Jens M.
  surname: Thomas
  fullname: Thomas, Jens M.
  organization: Institute of Integrative Biology, University of Liverpool
– sequence: 4
  givenname: Chandra S.
  surname: Verma
  fullname: Verma, Chandra S.
  organization: Nanyang Technological University
– sequence: 5
  givenname: Daniel J.
  orcidid: 0000-0002-7565-8937
  surname: Rigden
  fullname: Rigden, Daniel J.
  email: drigden@liverpool.ac.uk
  organization: Institute of Integrative Biology, University of Liverpool
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29388242$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtvEzEURi1URNPCpj-gssSmQkrxayb2EkXlIUUqQmVt3RnfKS4eO7VnWoVfj0NaFizY-C58dO7jOyFHMUUk5IyzS86YeL_NaboUjVrJF2TBmVktGZfqiCyY1qulbHRzTE5KuWOMtUa2r8ixMFJrocSClA3kW6Slh4AUOuqjn3yiY3IYfLylaaBlynM_zRlC2NE59j8gQz9h9r_QUYiTH32fU-ch0C1uJ--w0IwPCKHQnzE9xgo5GtMDBjqk4Mpr8nKon_jmqZ6S7x-vbtafl5vrT1_WHzbLXhop64tuaIEpo1VjDDaN4mJQEjSAlq00vcFOt04KzgdUonF1p1Zz1QGsOi3lKbk4eOuB7mcskx196TEEiJjmYrmpbXTVs4q-_Qe9S3OOdTormKheY5q98N2BqvuWknGw2-xHyDvLmd1HYfdR2D9RVPj8STl3I7q_6PPtK8APwKMPuPuPyn79dn1zkP4GllOXDQ
CitedBy_id crossref_primary_10_2174_18742858_v16_e221020_2022_17
crossref_primary_10_1093_nar_gkac812
crossref_primary_10_1039_D3DD00045A
crossref_primary_10_1021_acs_jcim_1c00175
crossref_primary_10_1002_pep2_24162
crossref_primary_10_1021_acscentsci_8b00614
crossref_primary_10_1021_jacs_9b00440
crossref_primary_10_1080_17460441_2019_1642322
crossref_primary_10_1590_fst_118021
crossref_primary_10_7554_eLife_47946
crossref_primary_10_1111_raq_12897
Cites_doi 10.1016/j.coph.2006.04.006
10.1016/0092-8674(93)90571-7
10.1016/S0076-6879(04)83004-0
10.1128/AEM.01827-08
10.1021/bi201732e
10.1021/bi027001j
10.1016/0040-4039(94)80033-2
10.3389/fnins.2017.00073
10.1074/mcp.M600334-MCP200
10.1039/C6MD00607H
10.1515/BC.2009.039
10.1002/bip.22066
10.1093/bioinformatics/16.4.404
10.1016/S0005-2736(99)00201-1
10.1093/nar/gkr393
10.1128/AEM.02286-06
10.1111/imb.12124
10.1007/s10989-010-9230-z
10.1021/acsinfecdis.6b00045
10.1093/bioinformatics/bth444
10.1002/prot.24341
10.1038/nrmicro1273
10.1021/bi027000r
10.1016/j.bbagen.2014.06.018
10.1016/S0304-4165(01)00156-8
10.1016/j.addr.2014.10.027
10.1038/nature09674
10.1111/j.1420-9101.2005.00925.x
10.1074/jbc.M113.451047
10.1016/j.bbamem.2012.03.015
10.1016/j.toxicon.2010.10.008
10.1128/AEM.67.1.15-21.2001
10.1042/bj3450653
10.1128/AEM.00830-13
10.1021/acs.jctc.5b00255
10.1093/nar/gkl266
10.1128/AEM.71.11.7613-7617.2005
10.1007/s00232-011-9343-0
10.1093/protein/12.7.535
10.1017/S0033583503003901
10.1016/S0965-1748(97)00090-8
10.1017/S1466252308001497
10.1093/molbev/msw106
10.1016/j.jmb.2005.01.071
10.32607/20758251-2015-7-1-37-47
10.1016/j.jmgm.2003.12.005
10.1128/AAC.00638-13
10.1021/bi034521l
10.1111/j.1399-302X.1992.tb00524.x
10.1002/prot.24930
10.1186/1741-7007-5-17
10.1021/bi980809c
10.1093/nar/gku1130
10.1079/9781845936570.0000
10.1074/jbc.M109.036459
10.1007/s000180050010
10.1016/j.dci.2014.05.020
10.1093/nar/25.17.3389
10.1038/srep45282
10.1021/acs.biochem.5b01306
10.1111/jam.12262
10.1042/bj20021255
10.1186/1471-2105-14-S13-S9
10.1021/bi9519258
10.1074/jbc.M112.363259
10.1111/j.1742-4658.2006.05421.x
10.1093/nar/gkn823
10.1016/0014-5793(96)00236-0
10.1039/b516237h
10.1016/j.ijantimicag.2010.08.011
10.1074/jbc.M602168200
10.1038/nsmb.1426
10.1016/j.plipres.2011.12.005
10.1021/bi500439x
10.1016/j.jip.2012.02.007
10.1002/prot.22499
10.3109/10837450.2011.572893
10.1016/j.biochi.2014.09.012
10.1093/nar/gkq366
10.1128/AAC.00744-09
10.1093/nar/gki412
10.1093/nar/28.1.235
10.1016/j.peptides.2015.05.012
10.1016/j.dci.2010.01.008
10.1021/bi970588v
10.1016/j.bbamem.2006.04.006
10.1006/bbrc.2000.2136
10.1002/jcc.20011
10.1139/o01-213
10.1021/acs.accounts.6b00074
10.1021/bi060635w
10.1128/AEM.70.12.7303-7310.2004
10.1099/00221287-148-4-973
10.1529/biophysj.105.061804
10.1073/pnas.1533186100
10.1074/jbc.271.24.14421
10.1104/pp.108.4.1353
10.1093/nar/gkh131
10.1128/mr.59.2.171-200.1995
10.1124/pr.55.1.2
10.1093/bioinformatics/btl158
10.1016/j.bbamem.2005.08.008
10.1021/bi026185z
10.1016/j.meegid.2014.02.002
10.1128/AAC.02237-12
10.1126/science.286.5439.498
10.1128/AAC.00041-16
10.1128/AAC.00209-09
10.1002/bip.20700
10.1002/prot.24973
10.1006/jmbi.1996.0293
10.1093/acprof:oso/9780199642274.003.0020
10.1002/prot.20338
10.1016/j.cbpc.2010.07.007
10.1021/acs.jcim.5b00161
10.1021/bi400359z
ContentType Journal Article
Copyright 2018 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
2018 Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
– notice: 2018 Wiley Periodicals, Inc.
DBID 24P
WIN
NPM
AAYXX
CITATION
7QL
7QO
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
DOI 10.1002/prot.25473
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Online Library Open Access
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE - Academic
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
Public Health
EISSN 1097-0134
EndPage 565
ExternalDocumentID 10_1002_prot_25473
29388242
PROT25473
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: BMSI (A*STAR)
– fundername: National Supercomputing Center Singapore
GroupedDBID -~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FA8
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WIN
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
NPM
AAYXX
CITATION
7QL
7QO
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c3933-c3edf6a04984599e55412f43a8aa83639c9eb86d3211fe425d8826814baa7b833
IEDL.DBID 24P
ISSN 0887-3585
IngestDate Sat Aug 17 01:05:55 EDT 2024
Thu Oct 10 17:10:49 EDT 2024
Fri Aug 23 02:25:22 EDT 2024
Sat Sep 28 08:36:07 EDT 2024
Sat Aug 24 00:59:26 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords ab initio modeling
protein structure-function
structure prediction
antimicrobial peptide
antimicrobial resistance
Language English
License Attribution
2018 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3933-c3edf6a04984599e55412f43a8aa83639c9eb86d3211fe425d8826814baa7b833
Notes The copyright line for this article was changed on 22 August 2019 after original online publication.
Institutions where work was performed: Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.; Agency for Science, Technology and Research (A*STAR), Bioinformatics Institute, Singapore
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7565-8937
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.25473
PMID 29388242
PQID 2028829953
PQPubID 1016441
PageCount 18
ParticipantIDs proquest_miscellaneous_1993384980
proquest_journals_2028829953
crossref_primary_10_1002_prot_25473
pubmed_primary_29388242
wiley_primary_10_1002_prot_25473_PROT25473
PublicationCentury 2000
PublicationDate May 2018
2018-05-00
20180501
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: May 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hokoben
PublicationTitle Proteins, structure, function, and bioinformatics
PublicationTitleAlternate Proteins
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 22
2004; 20
2010; 16
2011; 239
2006; 34
2015; 72
2004; 25
1999; 286
2011; 57
1999; 1462
2012; 17
2007; 73
1996; 383
2012; 98
2014; 23
2003; 55
2016; 33
2004; 32
1992; 7
2000; 16
2013; 57
2006; 22
2013; 115
2005; 347
2013; 52
1999; 56
2007; 6
2002; 148
2012; 1818
2007; 5
2005; 71
2006; 281
1996; 258
2016; 49
2003; 42
2010; 34
2010; 38
2010; 36
1995; 59
2004; 383
1997; 25
2015; 55
2003; 36
2001; 1527
1997; 27
2002; 80
2014; 1840
2005; 89
2009; 77
2012; 110
2016; 2
2009; 75
2006; 45
2000; 345
2013; 79
2004; 58
1997; 36
2005; 3
2007; 88
2005; 18
2003; 100
2017; 7
2010; 54
2017; 8
2005; 1716
2012; 287
2008; 9
2013; 288
1996; 35
2012; 51
2015; 48
2013; 14
2004; 70
2009; 53
2002; 41
1993; 72
2006; 1758
2015; 43
1999; 12
2010; 152
1994; 35
2009; 284
2005; 33
2007; 24
2014; 53
2000; 28
2012
2010
2015; 11
2006; 273
2009
2003; 370
2008; 15
2006; 6
2011; 39
2016; 84(S1)
2001; 67
2014; 82
2015; 7
2016; 55
2014; 107
1998; 37
2011; 469
2012; 1
2000; 268
2009; 390
2017; 11
1995; 108
1996; 271
2016; 60
2014
2013
2014; 78
2009; 37
e_1_2_6_114_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_95_1
e_1_2_6_118_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_91_1
Panteleev PV (e_1_2_6_90_1) 2015; 7
e_1_2_6_110_1
e_1_2_6_19_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_99_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_106_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_121_1
e_1_2_6_102_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_96_1
e_1_2_6_117_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_92_1
e_1_2_6_113_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_105_1
e_1_2_6_65_1
e_1_2_6_109_1
e_1_2_6_61_1
e_1_2_6_120_1
e_1_2_6_101_1
e_1_2_6_124_1
e_1_2_6_6_1
e_1_2_6_23_1
e_1_2_6_2_1
Jack RW (e_1_2_6_80_1) 1995; 59
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_116_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_112_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
Michel GPF (e_1_2_6_123_1) 2009
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_62_1
Krissinel E. (e_1_2_6_63_1) 2012; 1
e_1_2_6_85_1
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_108_1
e_1_2_6_100_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_115_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_119_1
e_1_2_6_71_1
e_1_2_6_111_1
e_1_2_6_14_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_37_1
e_1_2_6_79_1
e_1_2_6_103_1
Case DA (e_1_2_6_66_1) 2014
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_107_1
e_1_2_6_40_1
e_1_2_6_82_1
e_1_2_6_122_1
Lehrer RI. (e_1_2_6_45_1) 2012
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
Yang N (e_1_2_6_32_1) 2017; 7
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
References_xml – volume: 9
  start-page: 227
  issue: 02
  year: 2008
  end-page: 235
  article-title: Antimicrobial peptides and bacteriocins: alternatives to traditional antibiotics
  publication-title: Anim Health Res Rev.
– volume: 16
  start-page: 404
  issue: 4
  year: 2000
  end-page: 405
  article-title: The PSIPRED protein structure prediction server
  publication-title: Bioinformatics.
– volume: 72
  start-page: 823
  issue: 6
  year: 1993
  end-page: 826
  article-title: Molecular mimicry and the generation of host defense protein diversity
  publication-title: Cell
– volume: 53
  start-page: 3211
  issue: 8
  year: 2009
  end-page: 3217
  article-title: Peptide‐lipid huge toroidal pore, a new antimicrobial mechanism mediated by a lactococcal bacteriocin, lacticin Q
  publication-title: Antimicrob Agents Chemother.
– volume: 54
  start-page: 288
  issue: 1
  year: 2010
  end-page: 297
  article-title: Isolation and characterization of two members of the siderophore‐microcin family, microcins M and H47
  publication-title: Antimicrob Agents Chemother.
– volume: 281
  start-page: 20983
  issue: 30
  year: 2006
  end-page: 20992
  article-title: Latarcins, antimicrobial and cytolytic peptides from the venom of the spider (Zodariidae) that exemplify biomolecular diversity
  publication-title: J Biol Chem.
– volume: 6
  start-page: 468
  issue: 5
  year: 2006
  end-page: 472
  article-title: Antibacterial peptides for therapeutic use: obstacles and realistic outlook
  publication-title: Curr Opin Pharmacol.
– volume: 383
  start-page: 66
  year: 2004
  end-page: 93
  article-title: Protein structure prediction using Rosetta
  publication-title: Methods Enzymol.
– volume: 108
  start-page: 1353
  issue: 4
  year: 1995
  end-page: 1358
  article-title: Plant defensins: novel antimicrobial peptides as components of the host defense system
  publication-title: Plant Physiol.
– volume: 42
  start-page: 5341
  issue: 18
  year: 2003
  end-page: 5348
  article-title: Interfacial anchor properties of tryptophan residues in transmembrane peptides can dominate over hydrophobic matching effects in peptide−lipid interactions†
  publication-title: Biochemistry.
– year: 2014
– volume: 56
  start-page: 94
  issue: 1–2
  year: 1999
  end-page: 103
  article-title: Evolutionary diversification of the mammalian defensins
  publication-title: Cell Mol Life Sci.
– volume: 45
  start-page: 10759
  issue: 35
  year: 2006
  end-page: 10767
  article-title: Spatial structure and activity mechanism of a novel spider antimicrobial peptide
  publication-title: Biochemistry.
– volume: 82
  start-page: 175
  year: 2014
  end-page: 187
  article-title: Interplay of I‐TASSER and QUARK for template‐based and ab initio protein structure prediction in CASP10
  publication-title: Proteins.
– volume: 39
  start-page: W24
  issue: Web Server issue
  year: 2011
  end-page: W28
  article-title: CLICK‐topology‐independent comparison of biomolecular 3D structures
  publication-title: Nucleic Acids Res.
– volume: 36
  start-page: 9799
  issue: 32
  year: 1997
  end-page: 9806
  article-title: Membrane permeabilization mechanisms of a cyclic antimicrobial peptide, tachyplesin I, and its linear analog†
  publication-title: Biochemistry.
– volume: 42
  start-page: 14023
  issue: 47
  year: 2003
  end-page: 14035
  article-title: Ranacyclins, a new family of short cyclic antimicrobial peptides: biological function, mode of action, and parameters involved in target specificity
  publication-title: Biochemistry.
– volume: 51
  start-page: 149
  issue: 2
  year: 2012
  end-page: 177
  article-title: Role of lipids in the interaction of antimicrobial peptides with membranes
  publication-title: Prog Lipid Res.
– volume: 32
  start-page: D115
  issue: Database issue
  year: 2004
  end-page: 119
  article-title: UniProt: the Universal Protein knowledgebase
  publication-title: Nucleic Acids Res.
– volume: 239
  start-page: 27
  issue: 1–2
  year: 2011
  end-page: 34
  article-title: Antimicrobial peptides: successes, challenges and unanswered questions
  publication-title: J Membr Biol.
– volume: 55
  start-page: 2275
  issue: 10
  year: 2015
  end-page: 2287
  article-title: Predicting the minimal inhibitory concentration for antimicrobial peptides with Rana‐box domain
  publication-title: J Chem Inf Model.
– volume: 23
  start-page: 788
  issue: 6
  year: 2014
  end-page: 799
  article-title: Identification of a novel antimicrobial peptide, scolopendin 1, derived from centipede and its antifungal mechanism
  publication-title: Insect Mol Biol.
– volume: 1462
  start-page: 71
  issue: 1–2
  year: 1999
  end-page: 87
  article-title: Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells
  publication-title: Biochim Biophys Acta.
– volume: 48
  start-page: 324
  issue: 2
  year: 2015
  end-page: 341
  article-title: Sequence diversity and evolution of antimicrobial peptides in invertebrates
  publication-title: Dev Comp Immunol.
– volume: 3
  start-page: 777
  issue: 10
  year: 2005
  end-page: 788
  article-title: Bacteriocins: developing innate immunity for food
  publication-title: Nat Rev Microbiol.
– volume: 273
  start-page: 4170
  issue: 18
  year: 2006
  end-page: 4185
  article-title: Protein disulfides and protein disulfide oxidoreductases in hyperthermophiles
  publication-title: FEBS J.
– volume: 59
  start-page: 171
  issue: 2
  year: 1995
  end-page: 200
  article-title: Bacteriocins of Gram‐positive bacteria
  publication-title: Microbiol Rev.
– volume: 11
  start-page: 73
  year: 2017
  article-title: Membrane active antimicrobial peptides: translating mechanistic insights to design
  publication-title: Front Neurosci.
– volume: 73
  start-page: 2871
  issue: 9
  year: 2007
  end-page: 2877
  article-title: Structural analysis and characterization of lacticin Q, a novel bacteriocin belonging to a new family of unmodified bacteriocins of Gram‐positive bacteria
  publication-title: Appl Environ Microbiol.
– volume: 7
  start-page: 127
  issue: 2
  year: 1992
  end-page: 128
  article-title: Histatins 2 and 4 are autoproteolytic degradation products of human parotid saliva
  publication-title: Oral Microbiol Immunol.
– volume: 35
  start-page: 1037
  issue: 3
  year: 1996
  end-page: 1045
  article-title: Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha‐helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans
  publication-title: Biochemistry.
– volume: 79
  start-page: 4336
  issue: 14
  year: 2013
  end-page: 4346
  article-title: Garvicin A, a novel class IId bacteriocin from that inhibits septum formation in strains
  publication-title: Appl Environ Microbiol.
– volume: 288
  start-page: 10830
  issue: 15
  year: 2013
  end-page: 10840
  article-title: The cyclic cystine ladder in θ‐defensins is important for structure and stability, but not antibacterial activity
  publication-title: J Biol Chem.
– volume: 469
  start-page: 419
  issue: 7330
  year: 2011
  end-page: 423
  article-title: Reduction of disulphide bonds unmasks potent antimicrobial activity of human β‐defensin 1
  publication-title: Nature.
– volume: 57
  start-page: 3897
  issue: 8
  year: 2013
  end-page: 3902
  article-title: Lethal hydroxyl radical accumulation by a lactococcal bacteriocin, lacticin Q
  publication-title: Antimicrob Agents Chemother.
– volume: 70
  start-page: 7303
  issue: 12
  year: 2004
  end-page: 7310
  article-title: Molecular and genetic characterization of propionicin F, a bacteriocin from
  publication-title: Appl Environ Microbiol.
– volume: 27
  start-page: 1039
  issue: 12
  year: 1997
  end-page: 1046
  article-title: The genes encoding the antibacterial sex‐specific peptides ceratotoxins are clustered in the genome of the medfly
  publication-title: Insect Biochem Mol Biol.
– volume: 17
  start-page: 654
  issue: 6
  year: 2012
  end-page: 660
  article-title: Polymyxin B self‐associated with phospholipid nanomicelles
  publication-title: Pharm Dev Technol.
– volume: 7
  issue: 1
  year: 2017
  end-page: 3392
  article-title: Antibacterial and detoxifying activity of NZ17074 analogues with multi‐layers of selective antimicrobial actions against and
  publication-title: Sci Rep.
– volume: 98
  start-page: 280
  issue: 4
  year: 2012
  end-page: 287
  article-title: Prediction of antimicrobial peptides based on the adaptive neuro‐fuzzy inference system application
  publication-title: Biopolymers.
– volume: 71
  start-page: 7613
  issue: 11
  year: 2005
  end-page: 7617
  article-title: Bacteriocin (mutacin) production by genome sequence reference strain UA159: elucidation of the antimicrobial repertoire by genetic dissection
  publication-title: Appl Environ Microbiol.
– volume: 286
  start-page: 498
  issue: 5439
  year: 1999
  end-page: 502
  article-title: A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha‐defensins
  publication-title: Science.
– volume: 100
  start-page: 8880
  issue: 15
  year: 2003
  end-page: 8885
  article-title: Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human beta‐defensin 3
  publication-title: Proc Natl Acad Sci U S A.
– volume: 57
  start-page: 1823
  issue: 4
  year: 2013
  end-page: 1831
  article-title: Rattusin, an intestinal α‐defensin‐related peptide in rats with a unique cysteine spacing pattern and salt‐insensitive antibacterial activities
  publication-title: Antimicrob Agents Chemother.
– volume: 88
  start-page: 208
  issue: 2
  year: 2007
  end-page: 216
  article-title: Solution structures and biological functions of the antimicrobial peptide, arenicin‐1, and its linear derivative
  publication-title: Biopolymers.
– volume: 53
  start-page: 3637
  issue: 22
  year: 2014
  end-page: 3645
  article-title: Comparisons of interfacial Phe, Tyr, and Trp residues as determinants of orientation and dynamics for GWALP transmembrane peptides
  publication-title: Biochemistry.
– volume: 80
  start-page: 49
  issue: 1
  year: 2002
  end-page: 63
  article-title: Towards a structure‐function analysis of bovine lactoferricin and related tryptophan‐ and arginine‐containing peptides
  publication-title: Biochem Cell Biol.
– volume: 55
  start-page: 27
  issue: 1
  year: 2003
  end-page: 55
  article-title: Mechanisms of antimicrobial peptide action and resistance
  publication-title: Pharmacol Rev.
– volume: 57
  start-page: 84
  issue: 1
  year: 2011
  end-page: 92
  article-title: Vejovine, a new antibiotic from the scorpion venom of
  publication-title: Toxicon.
– volume: 370
  start-page: 233
  issue: 1
  year: 2003
  end-page: 243
  article-title: Interactions of the designed antimicrobial peptide MB21 and truncated dermaseptin S3 with lipid bilayers: molecular‐dynamics simulations
  publication-title: Biochem J.
– volume: 5
  start-page: 17
  year: 2007
  article-title: Ab initio modeling of small proteins by iterative TASSER simulations
  publication-title: BMC Biol.
– volume: 78
  start-page: 14
  year: 2014
  end-page: 27
  article-title: Therapeutic strategies to combat antibiotic resistance
  publication-title: Adv Drug Deliv Rev.
– volume: 77
  start-page: 128
  issue: S9
  year: 2009
  end-page: 132
  article-title: Fast and accurate automatic structure prediction with HHpred
  publication-title: Proteins.
– volume: 287
  start-page: 26606
  issue: 32
  year: 2012
  end-page: 26617
  article-title: Progressive structuring of a branched antimicrobial peptide on the path to the inner membrane target
  publication-title: J Biol Chem.
– volume: 16
  start-page: 199
  issue: 3
  year: 2010
  end-page: 213
  article-title: Multivalent antimicrobial peptides as therapeutics: design principles and structural diversities
  publication-title: Int J Pept Res Ther.
– volume: 34
  start-page: 638
  issue: 6
  year: 2010
  end-page: 647
  article-title: Functional analysis of four processing products from multiple precursors encoded by a lebocin‐related gene from
  publication-title: Dev Comp Immunol.
– volume: 41
  start-page: 12359
  issue: 41
  year: 2002
  end-page: 12368
  article-title: Solution and micelle‐bound structures of tachyplesin I and its active aromatic linear derivatives
  publication-title: Biochemistry.
– volume: 383
  start-page: 93
  issue: 1–2
  year: 1996
  end-page: 98
  article-title: Change in membrane permeability induced by protegrin 1: implication of disulphide bridges for pore formation
  publication-title: FEBS Lett.
– volume: 15
  start-page: 462
  issue: 5
  year: 2008
  end-page: 468
  article-title: Structure of the GspK‐GspI‐GspJ complex from the enterotoxigenic type 2 secretion system
  publication-title: Nat Struct Mol Biol.
– year: 2013
– volume: 1758
  start-page: 1184
  issue: 9
  year: 2006
  end-page: 1202
  article-title: Tryptophan‐ and arginine‐rich antimicrobial peptides: structures and mechanisms of action
  publication-title: Biochim Biophys Acta.
– volume: 49
  start-page: 1130
  issue: 6
  year: 2016
  end-page: 1138
  article-title: How membrane‐active peptides get into lipid membranes
  publication-title: Acc Chem Res.
– year: 2009
– volume: 347
  start-page: 827
  issue: 4
  year: 2005
  end-page: 839
  article-title: The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins
  publication-title: J Mol Biol.
– volume: 38
  start-page: W545
  issue: Web Server issue
  year: 2010
  end-page: W549
  article-title: Dali server: conservation mapping in 3D
  publication-title: Nucleic Acids Res.
– volume: 36
  start-page: 307
  issue: 3
  year: 2003
  end-page: 340
  article-title: Prediction of protein function from protein sequence and structure
  publication-title: Q Rev Biophys.
– volume: 2
  start-page: 442
  issue: 6
  year: 2016
  end-page: 450
  article-title: Contribution of amphipathicity and hydrophobicity to the antimicrobial activity and cytotoxicity of β‐hairpin peptides
  publication-title: ACS Infect Dis.
– volume: 89
  start-page: 3985
  issue: 6
  year: 2005
  end-page: 3996
  article-title: Interfacial tryptophan residues: a role for the cation‐pi effect?
  publication-title: Biophys J.
– volume: 25
  start-page: 3389
  issue: 17
  year: 1997
  end-page: 3402
  article-title: Gapped BLAST and PSI‐BLAST: a new generation of protein database search programs
  publication-title: Nucleic Acids Res.
– volume: 152
  start-page: 467
  issue: 4
  year: 2010
  end-page: 472
  article-title: Antimicrobial peptides with therapeutic potential from skin secretions of the Marsabit clawed frog (Pipidae)
  publication-title: Comp Biochem Physiol C Toxicol Pharmacol.
– volume: 37
  start-page: 14713
  issue: 42
  year: 1998
  end-page: 14718
  article-title: The preference of tryptophan for membrane interfaces
  publication-title: Biochemistry.
– volume: 24
  start-page: 708
  issue: 4
  year: 2007
  end-page: 734
  article-title: Microcins, gene‐encoded antibacterial peptides from enterobacteria
  publication-title: Nat Prod Rep.
– volume: 258
  start-page: 860
  issue: 5
  year: 1996
  end-page: 870
  article-title: Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes
  publication-title: J Mol Biol.
– volume: 33
  start-page: W230
  issue: Web Server issue
  year: 2005
  end-page: W232
  article-title: DiANNA: a web server for disulfide connectivity prediction
  publication-title: Nucleic Acids Res.
– volume: 107
  start-page: 211
  issue: Pt B
  year: 2014
  end-page: 215
  article-title: Linear antimicrobial peptides from ant venom
  publication-title: Biochimie.
– volume: 390
  start-page: 337
  issue: 4
  year: 2009
  end-page: 349
  article-title: Significance of the cyclic structure and of arginine residues for the antibacterial activity of arenicin‐1 and its interaction with phospholipid and lipopolysaccharide model membranes
  publication-title: Biol Chem.
– volume: 43
  start-page: D6
  issue: D1
  year: 2015
  end-page: 17
  article-title: Database resources of the National Center for Biotechnology Information
  publication-title: Nucleic Acids Res.
– volume: 52
  start-page: 3987
  issue: 23
  year: 2013
  end-page: 3994
  article-title: Solution structures of the linear leaderless bacteriocins enterocin 7A and 7B resemble carnocyclin A, a circular antimicrobial peptide
  publication-title: Biochemistry.
– volume: 18
  start-page: 1387
  issue: 6
  year: 2005
  end-page: 1394
  article-title: Molecular evolution of animal antimicrobial peptides: widespread moderate positive selection
  publication-title: J Evol Biol.
– volume: 75
  start-page: 538
  issue: 2
  year: 2009
  end-page: 541
  article-title: Lacticin Q, a lactococcal bacteriocin, causes high‐level membrane permeability in the absence of specific receptors
  publication-title: Appl Environ Microbiol.
– volume: 268
  start-page: 433
  issue: 2
  year: 2000
  end-page: 436
  article-title: Kassinatuerin‐1: a peptide with broad‐spectrum antimicrobial activity isolated from the skin of the hyperoliid frog,
  publication-title: Biochem Biophys Res Commun.
– start-page: 203
  year: 2012
  end-page: 210
– volume: 1840
  start-page: 3006
  issue: 10
  year: 2014
  end-page: 3016
  article-title: Cysteine deleted protegrin‐1 (CDP‐1): anti‐bacterial activity, outer‐membrane disruption and selectivity
  publication-title: Biochim Biophys Acta.
– volume: 110
  start-page: 92
  issue: 1
  year: 2012
  end-page: 101
  article-title: Inactivation of the budded virus of M nucleopolyhedrovirus by gloverin
  publication-title: J Invertebr Pathol.
– volume: 58
  start-page: 560
  issue: 3
  year: 2004
  end-page: 570
  article-title: Ab initio prediction of the three‐dimensional structure of a de novo designed protein: a double‐blind case study
  publication-title: Proteins.
– volume: 25
  start-page: 865
  issue: 6
  year: 2004
  end-page: 871
  article-title: SPICKER: a clustering approach to identify near‐native protein folds
  publication-title: J Comput Chem.
– start-page: 1
  year: 2012
  end-page: 27
– volume: 20
  start-page: 3702
  issue: 18
  year: 2004
  end-page: 3704
  article-title: CLANS: a Java application for visualizing protein families based on pairwise similarity
  publication-title: Bioinformatics.
– volume: 33
  start-page: 2345
  issue: 9
  year: 2016
  end-page: 2356
  article-title: The defensins consist of two independent, convergent protein superfamilies
  publication-title: Mol Biol Evol.
– volume: 8
  start-page: 276
  issue: 2
  year: 2017
  end-page: 285
  article-title: Structural features of many circular and leaderless bacteriocins are similar to those in saposins and saposin‐like peptides
  publication-title: Med Chem Commun.
– volume: 7
  start-page: 37
  issue: 1
  year: 2015
  end-page: 47
  article-title: Structure and biological functions of β‐hairpin antimicrobial peptides
  publication-title: Acta Naturae.
– volume: 42
  start-page: 8976
  issue: 30
  year: 2003
  end-page: 8987
  article-title: Molecular dynamics simulations of pentapeptides at interfaces: salt bridge and cation−π interactions
  publication-title: Biochemistry.
– start-page: 230
  year: 2010
– volume: 28
  start-page: 235
  issue: 1
  year: 2000
  end-page: 242
  article-title: The protein data bank
  publication-title: Nucleic Acids Res.
– volume: 72
  start-page: 88
  year: 2015
  end-page: 94
  article-title: Antimicrobial peptides: possible anti‐infective agents
  publication-title: Peptides.
– volume: 67
  start-page: 15
  issue: 1
  year: 2001
  end-page: 21
  article-title: The group I strain of , UA140, produces both the lantibiotic mutacin I and a nonlantibiotic bacteriocin, mutacin IV
  publication-title: Appl Environ Microbiol.
– volume: 55
  start-page: 733
  issue: 4
  year: 2016
  end-page: 742
  article-title: Nuclear magnetic resonance solution structures of lacticin Q and aureocin A53 reveal a structural motif conserved among leaderless bacteriocins with broad‐spectrum activity
  publication-title: Biochemistry.
– volume: 60
  start-page: 4283
  issue: 7
  year: 2016
  end-page: 4289
  article-title: The disulfide bond of the peptide thanatin is dispensible for its antimicrobial activity in vivo and in vitro
  publication-title: Antimicrob Agents Chemother.
– volume: 35
  start-page: 8001
  issue: 43
  year: 1994
  end-page: 8004
  article-title: Structure of cypemycin, a new peptide antibiotic
  publication-title: Tetrahedron Lett.
– volume: 34
  start-page: W177
  issue: Web Server
  year: 2006
  end-page: W181
  article-title: DISULFIND: a disulfide bonding state and cysteine connectivity prediction server
  publication-title: Nucleic Acids Res.
– volume: 11
  start-page: 3696
  issue: 8
  year: 2015
  end-page: 3713
  article-title: ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB
  publication-title: J Chem Theory Comput.
– volume: 284
  start-page: 28674
  issue: 42
  year: 2009
  end-page: 28681
  article-title: The three‐dimensional structure of carnocyclin a reveals that many circular bacteriocins share a common structural motif
  publication-title: J Biol Chem.
– volume: 22
  start-page: 1658
  issue: 13
  year: 2006
  end-page: 1659
  article-title: Cd‐hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences
  publication-title: Bioinformatics.
– volume: 148
  start-page: 973
  issue: 4
  year: 2002
  end-page: 984
  article-title: Characterization of the genetic locus responsible for the production of ABP‐118, a novel bacteriocin produced by the probiotic bacterium subsp. salivarius UCC118
  publication-title: Microbiology.
– volume: 84(S1)
  start-page: 51
  year: 2016
  end-page: 66
  article-title: Evaluation of free modeling targets in CASP11 and ROLL
  publication-title: Proteins.
– volume: 1527
  start-page: 141
  issue: 3
  year: 2001
  end-page: 148
  article-title: Dicynthaurin: an antimicrobial peptide from hemocytes of the solitary tunicate,
  publication-title: Biochim Biophys Acta.
– volume: 36
  start-page: 579
  issue: 6
  year: 2010
  end-page: 580
  article-title: Disulphide bonds of the peptide protegrin‐1 are not essential for antimicrobial activity and haemolytic activity
  publication-title: Int J Antimicrob Agents.
– volume: 1716
  start-page: 11
  issue: 1
  year: 2005
  end-page: 18
  article-title: Membrane‐disruptive abilities of beta‐hairpin antimicrobial peptides correlate with conformation and activity: a 31P and 1H NMR study
  publication-title: Biochim Biophys Acta.
– volume: 271
  start-page: 14421
  issue: 24
  year: 1996
  end-page: 14429
  article-title: Covalent structure, synthesis, and structure‐function studies of mesentericin Y 105(37), a defensive peptide from gram‐positive bacteria
  publication-title: J Biol Chem.
– volume: 84(S1)
  start-page: 76
  year: 2016
  end-page: 86
  article-title: Integration of QUARK and I‐TASSER for Ab initio protein structure prediction in CASP11
  publication-title: Proteins.
– volume: 6
  start-page: 882
  issue: 5
  year: 2007
  end-page: 894
  article-title: Anti‐infection peptidomics of amphibian skin
  publication-title: Mol Cell Proteomics.
– volume: 12
  start-page: 535
  issue: 7
  year: 1999
  end-page: 548
  article-title: Amino acid neighbours and detailed conformational analysis of cysteines in proteins
  publication-title: Protein Eng.
– volume: 115
  start-page: 663
  issue: 3
  year: 2013
  end-page: 672
  article-title: Investigation of the role of tryptophan residues in cationic antimicrobial peptides to determine the mechanism of antimicrobial action
  publication-title: J Appl Microbiol.
– volume: 37
  start-page: D933
  issue: Database issue
  year: 2009
  end-page: D937
  article-title: APD2: the updated antimicrobial peptide database and its application in peptide design
  publication-title: Nucleic Acids Res.
– volume: 7
  start-page: 45282
  year: 2017
  article-title: Rattusin structure reveals a novel defensin scaffold formed by intermolecular disulfide exchanges
  publication-title: Sci Rep.
– volume: 1818
  start-page: 1613
  issue: 7
  year: 2012
  end-page: 1624
  article-title: Structure, activity and interactions of the cysteine deleted analog of tachyplesin‐1 with lipopolysaccharide micelle: Mechanistic insights into outer‐membrane permeabilization and endotoxin neutralization
  publication-title: Biochim Biophys Acta.
– volume: 51
  start-page: 2044
  issue: 10
  year: 2012
  end-page: 2053
  article-title: Tyrosine replacing tryptophan as an anchor in GWALP peptides
  publication-title: Biochemistry.
– volume: 14
  start-page: S9
  issue: S13
  year: 2013
  article-title: Dinosolve: a protein disulfide bonding prediction server using context‐based features to enhance prediction accuracy
  publication-title: BMC Bioinformatics.
– volume: 23
  start-page: 129
  year: 2014
  end-page: 137
  article-title: Rapid evolution of antimicrobial peptide genes in an insect host‐social parasite system
  publication-title: Infect Genet Evol.
– volume: 1
  start-page: 76
  issue: 2
  year: 2012
  end-page: 85
  article-title: Enhanced fold recognition using efficient short fragment clustering
  publication-title: J Mol Biochem.
– volume: 22
  start-page: 377
  issue: 5
  year: 2004
  end-page: 395
  article-title: MMTSB Tool Set: enhanced sampling and multiscale modeling methods for applications in structural biology
  publication-title: J Mol Graph Model.
– volume: 345
  start-page: 653
  issue: 3
  year: 2000
  end-page: 664
  article-title: Androctonin, a hydrophilic disulphide‐bridged non‐haemolytic anti‐microbial peptide: a plausible mode of action
  publication-title: Biochem J.
– ident: e_1_2_6_22_1
  doi: 10.1016/j.coph.2006.04.006
– ident: e_1_2_6_37_1
  doi: 10.1016/0092-8674(93)90571-7
– ident: e_1_2_6_48_1
  doi: 10.1016/S0076-6879(04)83004-0
– ident: e_1_2_6_77_1
  doi: 10.1128/AEM.01827-08
– ident: e_1_2_6_15_1
  doi: 10.1021/bi201732e
– ident: e_1_2_6_13_1
  doi: 10.1021/bi027001j
– ident: e_1_2_6_114_1
  doi: 10.1016/0040-4039(94)80033-2
– ident: e_1_2_6_8_1
  doi: 10.3389/fnins.2017.00073
– ident: e_1_2_6_73_1
  doi: 10.1074/mcp.M600334-MCP200
– ident: e_1_2_6_86_1
  doi: 10.1039/C6MD00607H
– ident: e_1_2_6_46_1
  doi: 10.1515/BC.2009.039
– ident: e_1_2_6_30_1
  doi: 10.1002/bip.22066
– ident: e_1_2_6_72_1
  doi: 10.1093/bioinformatics/16.4.404
– ident: e_1_2_6_21_1
  doi: 10.1016/S0005-2736(99)00201-1
– ident: e_1_2_6_65_1
  doi: 10.1093/nar/gkr393
– ident: e_1_2_6_76_1
  doi: 10.1128/AEM.02286-06
– ident: e_1_2_6_115_1
  doi: 10.1111/imb.12124
– ident: e_1_2_6_60_1
  doi: 10.1007/s10989-010-9230-z
– ident: e_1_2_6_31_1
  doi: 10.1021/acsinfecdis.6b00045
– ident: e_1_2_6_64_1
  doi: 10.1093/bioinformatics/bth444
– ident: e_1_2_6_41_1
  doi: 10.1002/prot.24341
– ident: e_1_2_6_81_1
  doi: 10.1038/nrmicro1273
– ident: e_1_2_6_85_1
  doi: 10.1021/bi027000r
– ident: e_1_2_6_103_1
  doi: 10.1016/j.bbagen.2014.06.018
– ident: e_1_2_6_107_1
  doi: 10.1016/S0304-4165(01)00156-8
– ident: e_1_2_6_27_1
  doi: 10.1016/j.addr.2014.10.027
– ident: e_1_2_6_47_1
  doi: 10.1038/nature09674
– ident: e_1_2_6_34_1
  doi: 10.1111/j.1420-9101.2005.00925.x
– ident: e_1_2_6_91_1
  doi: 10.1074/jbc.M113.451047
– ident: e_1_2_6_102_1
  doi: 10.1016/j.bbamem.2012.03.015
– ident: e_1_2_6_124_1
  doi: 10.1016/j.toxicon.2010.10.008
– ident: e_1_2_6_120_1
  doi: 10.1128/AEM.67.1.15-21.2001
– ident: e_1_2_6_98_1
  doi: 10.1042/bj3450653
– ident: e_1_2_6_74_1
  doi: 10.1128/AEM.00830-13
– ident: e_1_2_6_67_1
  doi: 10.1021/acs.jctc.5b00255
– ident: e_1_2_6_55_1
  doi: 10.1093/nar/gkl266
– ident: e_1_2_6_121_1
  doi: 10.1128/AEM.71.11.7613-7617.2005
– ident: e_1_2_6_28_1
  doi: 10.1007/s00232-011-9343-0
– ident: e_1_2_6_44_1
  doi: 10.1093/protein/12.7.535
– ident: e_1_2_6_69_1
  doi: 10.1017/S0033583503003901
– ident: e_1_2_6_109_1
  doi: 10.1016/S0965-1748(97)00090-8
– ident: e_1_2_6_6_1
  doi: 10.1017/S1466252308001497
– ident: e_1_2_6_71_1
  doi: 10.1093/molbev/msw106
– ident: e_1_2_6_54_1
  doi: 10.1016/j.jmb.2005.01.071
– volume: 7
  start-page: 37
  issue: 1
  year: 2015
  ident: e_1_2_6_90_1
  article-title: Structure and biological functions of β‐hairpin antimicrobial peptides
  publication-title: Acta Naturae.
  doi: 10.32607/20758251-2015-7-1-37-47
  contributor:
    fullname: Panteleev PV
– ident: e_1_2_6_68_1
  doi: 10.1016/j.jmgm.2003.12.005
– ident: e_1_2_6_82_1
  doi: 10.1128/AAC.00638-13
– ident: e_1_2_6_100_1
  doi: 10.1021/bi034521l
– ident: e_1_2_6_105_1
  doi: 10.1111/j.1399-302X.1992.tb00524.x
– ident: e_1_2_6_2_1
– ident: e_1_2_6_42_1
  doi: 10.1002/prot.24930
– ident: e_1_2_6_40_1
  doi: 10.1186/1741-7007-5-17
– ident: e_1_2_6_9_1
  doi: 10.1021/bi980809c
– ident: e_1_2_6_58_1
  doi: 10.1093/nar/gku1130
– ident: e_1_2_6_19_1
  doi: 10.1079/9781845936570.0000
– ident: e_1_2_6_83_1
  doi: 10.1074/jbc.M109.036459
– ident: e_1_2_6_38_1
  doi: 10.1007/s000180050010
– ident: e_1_2_6_33_1
  doi: 10.1016/j.dci.2014.05.020
– ident: e_1_2_6_59_1
  doi: 10.1093/nar/25.17.3389
– start-page: 1
  volume-title: Antimicrobial Peptides and Innate Immunity
  year: 2012
  ident: e_1_2_6_45_1
  contributor:
    fullname: Lehrer RI.
– ident: e_1_2_6_61_1
  doi: 10.1038/srep45282
– ident: e_1_2_6_88_1
  doi: 10.1021/acs.biochem.5b01306
– volume-title: Amber 14
  year: 2014
  ident: e_1_2_6_66_1
  contributor:
    fullname: Case DA
– ident: e_1_2_6_18_1
  doi: 10.1111/jam.12262
– ident: e_1_2_6_12_1
  doi: 10.1042/bj20021255
– ident: e_1_2_6_57_1
  doi: 10.1186/1471-2105-14-S13-S9
– ident: e_1_2_6_84_1
  doi: 10.1021/bi9519258
– ident: e_1_2_6_23_1
  doi: 10.1074/jbc.M112.363259
– ident: e_1_2_6_93_1
  doi: 10.1111/j.1742-4658.2006.05421.x
– ident: e_1_2_6_20_1
  doi: 10.1093/nar/gkn823
– ident: e_1_2_6_94_1
  doi: 10.1016/0014-5793(96)00236-0
– ident: e_1_2_6_116_1
  doi: 10.1039/b516237h
– ident: e_1_2_6_95_1
  doi: 10.1016/j.ijantimicag.2010.08.011
– ident: e_1_2_6_111_1
  doi: 10.1074/jbc.M602168200
– ident: e_1_2_6_122_1
  doi: 10.1038/nsmb.1426
– ident: e_1_2_6_7_1
  doi: 10.1016/j.plipres.2011.12.005
– ident: e_1_2_6_16_1
  doi: 10.1021/bi500439x
– ident: e_1_2_6_5_1
  doi: 10.1016/j.jip.2012.02.007
– volume: 7
  issue: 1
  year: 2017
  ident: e_1_2_6_32_1
  article-title: Antibacterial and detoxifying activity of NZ17074 analogues with multi‐layers of selective antimicrobial actions against Escherichia coli and Salmonella enteritidis
  publication-title: Sci Rep.
  contributor:
    fullname: Yang N
– ident: e_1_2_6_52_1
  doi: 10.1002/prot.22499
– ident: e_1_2_6_26_1
  doi: 10.3109/10837450.2011.572893
– ident: e_1_2_6_108_1
  doi: 10.1016/j.biochi.2014.09.012
– ident: e_1_2_6_79_1
  doi: 10.1093/nar/gkq366
– ident: e_1_2_6_117_1
  doi: 10.1128/AAC.00744-09
– ident: e_1_2_6_56_1
  doi: 10.1093/nar/gki412
– ident: e_1_2_6_53_1
  doi: 10.1093/nar/28.1.235
– ident: e_1_2_6_4_1
  doi: 10.1016/j.peptides.2015.05.012
– ident: e_1_2_6_89_1
  doi: 10.1016/j.dci.2010.01.008
– ident: e_1_2_6_99_1
  doi: 10.1021/bi970588v
– ident: e_1_2_6_17_1
  doi: 10.1016/j.bbamem.2006.04.006
– ident: e_1_2_6_112_1
  doi: 10.1006/bbrc.2000.2136
– ident: e_1_2_6_62_1
  doi: 10.1002/jcc.20011
– ident: e_1_2_6_3_1
– ident: e_1_2_6_10_1
  doi: 10.1139/o01-213
– ident: e_1_2_6_24_1
  doi: 10.1021/acs.accounts.6b00074
– ident: e_1_2_6_113_1
  doi: 10.1021/bi060635w
– ident: e_1_2_6_118_1
  doi: 10.1128/AEM.70.12.7303-7310.2004
– ident: e_1_2_6_119_1
  doi: 10.1099/00221287-148-4-973
– ident: e_1_2_6_14_1
  doi: 10.1529/biophysj.105.061804
– ident: e_1_2_6_106_1
  doi: 10.1073/pnas.1533186100
– ident: e_1_2_6_11_1
  doi: 10.1074/jbc.271.24.14421
– ident: e_1_2_6_70_1
  doi: 10.1104/pp.108.4.1353
– ident: e_1_2_6_50_1
  doi: 10.1093/nar/gkh131
– volume: 59
  start-page: 171
  issue: 2
  year: 1995
  ident: e_1_2_6_80_1
  article-title: Bacteriocins of Gram‐positive bacteria
  publication-title: Microbiol Rev.
  doi: 10.1128/mr.59.2.171-200.1995
  contributor:
    fullname: Jack RW
– ident: e_1_2_6_49_1
  doi: 10.1124/pr.55.1.2
– volume-title: Bacterial Secreted Proteins: Secretory Mechanisms and Role in Pathogenesis
  year: 2009
  ident: e_1_2_6_123_1
  contributor:
    fullname: Michel GPF
– ident: e_1_2_6_51_1
  doi: 10.1093/bioinformatics/btl158
– ident: e_1_2_6_104_1
  doi: 10.1016/j.bbamem.2005.08.008
– ident: e_1_2_6_101_1
  doi: 10.1021/bi026185z
– ident: e_1_2_6_35_1
  doi: 10.1016/j.meegid.2014.02.002
– ident: e_1_2_6_75_1
  doi: 10.1128/AAC.02237-12
– ident: e_1_2_6_92_1
  doi: 10.1126/science.286.5439.498
– ident: e_1_2_6_97_1
  doi: 10.1128/AAC.00041-16
– ident: e_1_2_6_87_1
  doi: 10.1128/AAC.00209-09
– ident: e_1_2_6_96_1
  doi: 10.1002/bip.20700
– ident: e_1_2_6_43_1
  doi: 10.1002/prot.24973
– ident: e_1_2_6_25_1
  doi: 10.1006/jmbi.1996.0293
– ident: e_1_2_6_36_1
  doi: 10.1093/acprof:oso/9780199642274.003.0020
– volume: 1
  start-page: 76
  issue: 2
  year: 2012
  ident: e_1_2_6_63_1
  article-title: Enhanced fold recognition using efficient short fragment clustering
  publication-title: J Mol Biochem.
  contributor:
    fullname: Krissinel E.
– ident: e_1_2_6_39_1
  doi: 10.1002/prot.20338
– ident: e_1_2_6_110_1
  doi: 10.1016/j.cbpc.2010.07.007
– ident: e_1_2_6_29_1
  doi: 10.1021/acs.jcim.5b00161
– ident: e_1_2_6_78_1
  doi: 10.1021/bi400359z
SSID ssj0006936
Score 2.372247
Snippet Antimicrobial resistance within a wide range of infectious agents is a severe and growing public health threat. Antimicrobial peptides (AMPs) are among the...
Abstract Antimicrobial resistance within a wide range of infectious agents is a severe and growing public health threat. Antimicrobial peptides (AMPs) are...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 548
SubjectTerms ab initio modeling
Amino acid composition
Antibiotics
Antiinfectives and antibacterials
Antimicrobial activity
Antimicrobial agents
antimicrobial peptide
Antimicrobial peptides
Antimicrobial resistance
Astronomical models
Cations
Chemical bonds
Disulfide bonds
Health risks
Model matching
Peptides
protein structure‐function
Public health
Scale (ratio)
structure prediction
Three dimensional models
Universe
Title Large scale ab initio modeling of structurally uncharacterized antimicrobial peptides reveals known and novel folds
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.25473
https://www.ncbi.nlm.nih.gov/pubmed/29388242
https://www.proquest.com/docview/2028829953
https://search.proquest.com/docview/1993384980
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB_0SrEvpWprr34QaelDYau3yWaz0Bc_KiL9EFHwbUk2Ezg4d4VthfOvdyZ7uyKFgi8hkIQsmUzmN9nJbwA-oSok6kmVYOYNk2pjYrzSSYYuoHW2khU_Tv75S59eqbPr7HoJvvVvYTp-iOHCjTUjntes4Na1e4-kocxj8DXl1LnL8IIpY5g5P1Xnwzmsi5ggsFMjQsUDOWm69zj2qTn6B2M-hazR5py8gdcLsCgOOumuwhLWa7B-UJOjfDMXn0UM34z34mvw8rCvrRz1SdzWof3Bkd6iJUmgsE5MOVaoETH_DRkt0QTRMcgy-8ZsLsjKDQzO9-gFrfv0ZhrJmuhDbjkExmMrmPeJ9q3gG7maOnlRN3c4E6GZ-fYtXJ18vzw6TRZ5FpJKFlJSiT5oS76CUVlRICGMSRqUtMZaIwnCVAU6o70kZzEgKbknWK7NRDlrc2ekfAejuqnxPYjgNOY2tyY3Qe0HWSBWGMjFMyHXurBj-Ngvd3nb0WmUHXFyWrJQyiiUMWz1kigXKtWWKSEhQ8Yzo-bdoZmWk_9w2Bqbv23J0YjS0Gz7Y9joJDhMQ7iGxqt0DF-iSP8zf3l-8fsy1j48p_MmvCI4ZbpwyC0YkfhwmyDLH7cTdyaVxxfpA9ce6lk
link.rule.ids 315,783,787,1378,11574,27936,27937,46064,46306,46488,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RSxwxEB6sRexLabW1p7amWPpQWPU22Wz20UrltKeVcoJvIbuZwMG5K6wK9tc7k71bkUKhL0tgE7JkMplvZiffAHxBVUjUwyrBzBsm1cbEeKWTDMuArnSVrPhy8tm5Hl2q06vsap6bw3dhOn6IPuDGmhHPa1ZwDkjvP7GGMpHBXsq1c1_AS6VpJzKxs7roD2JdxAqBnR4RLO7ZSdP9p7HP7dFfIPM5Zo1G5_gNvJ6jRXHYifctLGG9BuuHNXnK1w_iq4j5mzEwvgYr3xet1aNFFbd1aMec6i1aEgUKV4opJws1IhbAIaslmiA6Clmm35g9CDJzPYXzH_SCFn56PY1sTfQhN5wD47EVTPxEG1dwSK6mTl7UzT3ORGhmvn0Hl8c_JkejZF5oIalkISU90QftyFkwKisKJIgxTIOSzjhnJGGYqsDSaC_JWwxIWu4Jl2szVKVzeWmkfA_LdVPjBxCh1Ji73JncBHUQZIFYYSAfz4Rc68INYHex3Pam49OwHXNyalkoNgplANsLSdi5TrU2JShkyHpm9Ppz_5qWk39xuBqbu9ZyOqI0NNvBADY6CfbTELCh8SodwLco0n_Mby9-_5rE1ub_dN6B1dHkbGzHJ-c_t-AVYSvT5UZuwzKJEj8SfrktP8Vd-ggM4Ozk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9qRe2LH_3Q06oRxQdhr71NNpsFX2r1qFprKS30RUJ2M4HD6-7BtoX2r3eS3O5RBUFflsAmJJvJZH6TnfwG4A2KgqMcVQlmVnlSbUyUFTLJsHRoSlPxyl9O_nYg907El9PsdAned3dhIj9Ef-DmNSPs117BZ9ZtLUhDPY_BMPWpc2_BbSEJ-npIdLQgj5JFSBAY1YhQcU9Omm4t2t40R39gzJuQNdic8QP40Y02hpr8HF6cl8Pq-jcix__9nIdwfw5G2U5cPY9gCetVWNupyRE_u2JvWQgPDefuq3DnQ1e6t9sliVuDdt9HkrOWJI3MlGziY5EaFvLrkFFkjWORodaze0yvGFnRniH6Gi0juU7OJoEMigYy8yE2FlvmeaVIL5g_8aupkmV1c4lT5pqpbdfhZPzpeHcvmedxSCpecE5PtE4a8kWUyIoCCcGMUie4UcYoThCpKrBU0nJyRh3SJmIJ9ks1EqUxeak434DluqnxCTBXSsxNblSunNh2vECs0JELqVwuZWEG8LoTp55Fug4diZlT7WdYhxkewGYnaT1X2VanhLQUGeeMXr_qX9N0-j8opsbmotU-2pEr6m17AI_jCum7IdxE7UU6gHdBzn_pXx8efT8Opaf_Uvkl3D38ONb7nw--PoMVQm4qRl5uwjJJEp8TOjovXwQl-AWpgQzY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+scale+ab+initio+modeling+of+structurally+uncharacterized+antimicrobial+peptides+reveals+known+and+novel+folds&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Kozic%2C+Mara&rft.au=Fox%2C+Stephen+J&rft.au=Thomas%2C+Jens+M&rft.au=Verma%2C+Chandra+S&rft.date=2018-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0887-3585&rft.eissn=1097-0134&rft.volume=86&rft.issue=5&rft.spage=548&rft.epage=565&rft_id=info:doi/10.1002%2Fprot.25473&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon