Large scale ab initio modeling of structurally uncharacterized antimicrobial peptides reveals known and novel folds

Antimicrobial resistance within a wide range of infectious agents is a severe and growing public health threat. Antimicrobial peptides (AMPs) are among the leading alternatives to current antibiotics, exhibiting broad spectrum activity. Their activity is determined by numerous properties such as cat...

Full description

Saved in:
Bibliographic Details
Published inProteins, structure, function, and bioinformatics Vol. 86; no. 5; pp. 548 - 565
Main Authors Kozic, Mara, Fox, Stephen J., Thomas, Jens M., Verma, Chandra S., Rigden, Daniel J.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Antimicrobial resistance within a wide range of infectious agents is a severe and growing public health threat. Antimicrobial peptides (AMPs) are among the leading alternatives to current antibiotics, exhibiting broad spectrum activity. Their activity is determined by numerous properties such as cationic charge, amphipathicity, size, and amino acid composition. Currently, only around 10% of known AMP sequences have experimentally solved structures. To improve our understanding of the AMP structural universe we have carried out large scale ab initio 3D modeling of structurally uncharacterized AMPs that revealed similarities between predicted folds of the modeled sequences and structures of characterized AMPs. Two of the peptides whose models matched known folds are Lebocin Peptide 1A (LP1A) and Odorranain M, predicted to form β‐hairpins but, interestingly, to lack the intramolecular disulfide bonds, cation‐π or aromatic interactions that generally stabilize such AMP structures. Other examples include Ponericin Q42, Latarcin 4a, Kassinatuerin 1, Ceratotoxin D, and CPF‐B1 peptide, which have α‐helical folds, as well as mixed αβ folds of human Histatin 2 peptide and Garvicin A which are, to the best of our knowledge, the first linear αββ fold AMPs lacking intramolecular disulfide bonds. In addition to fold matches to experimentally derived structures, unique folds were also obtained, namely for Microcin M and Ipomicin. These results help in understanding the range of protein scaffolds that naturally bear antimicrobial activity and may facilitate protein design efforts towards better AMPs.
Bibliography:The copyright line for this article was changed on 22 August 2019 after original online publication.
Institutions where work was performed: Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.; Agency for Science, Technology and Research (A*STAR), Bioinformatics Institute, Singapore
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0887-3585
1097-0134
DOI:10.1002/prot.25473