Band gap and effective electron mass of cubic InN

We succeeded in growing single crystalline c‐InN films on 3C‐SiC substrate with a c‐GaN buffer layer by MBE. Spectroscopic ellipsometry is applied in order to determine the complex dielectric function for cubic InN from mid‐infrared into the visible spectral region. The high electron densities above...

Full description

Saved in:
Bibliographic Details
Published inPhysica status solidi. C Vol. 5; no. 6; pp. 2342 - 2344
Main Authors Schley, P., Napierala, C., Goldhahn, R., Gobsch, G., Schörmann, J., As, D. J., Lischka, K., Feneberg, M., Thonke, K., Fuchs, F., Bechstedt, F.
Format Journal Article
LanguageEnglish
Published Berlin WILEY-VCH Verlag 01.05.2008
WILEY‐VCH Verlag
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We succeeded in growing single crystalline c‐InN films on 3C‐SiC substrate with a c‐GaN buffer layer by MBE. Spectroscopic ellipsometry is applied in order to determine the complex dielectric function for cubic InN from mid‐infrared into the visible spectral region. The high electron densities above 1019 cm–3 cause pronounced Burstein‐Moss shifts at the gap. Taking into account the non‐parabolicity and the filling of the conduction band, data analysis yields renormalized band edges between 0.430 and 0.455 eV. Including carrier‐induced band‐gap renormalization we estimate a zero‐density band gap of ∼0.596eV for c‐InNwith a corresponding effective electron mass of 0.041m0 at the Γ point of the Brillouin zone. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Bibliography:istex:670568A941AA814B0ACF496BBAFDE744854A881A
ark:/67375/WNG-802LKL2Q-C
ArticleID:PSSC200778482
ISSN:1862-6351
1610-1642
DOI:10.1002/pssc.200778482