Microbial fuel cell is emerging as a versatile technology: a review on its possible applications, challenges and strategies to improve the performances

Summary Microbial fuel cells (MFCs) are emerging as a versatile renewable energy technology. This is particularly because of the multidimensional applications of this eco‐friendly technology. The technology depends on the electroactive bacteria, popularly known as exoelectrogens, to simultaneously p...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of energy research Vol. 42; no. 2; pp. 369 - 394
Main Authors Kumar, Ravinder, Singh, Lakhveer, Zularisam, A. W., Hai, Faisal I.
Format Journal Article
LanguageEnglish
Published Bognor Regis Hindawi Limited 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Microbial fuel cells (MFCs) are emerging as a versatile renewable energy technology. This is particularly because of the multidimensional applications of this eco‐friendly technology. The technology depends on the electroactive bacteria, popularly known as exoelectrogens, to simultaneously produce electric power and treat wastewater. Electrode modifications with nanomaterials such as gold nanoparticles and iron oxide nanoparticles or pretreatment methods such as sonication and autoclave sterilization have shown promising results in enhancing MFC performance for electricity generation and wastewater treatment. The MFC technology has been also investigated for the removal of various heavy metals and toxic elements, and to detect the presence of toxic elements in wastewater. In addition, the MFCs can be modified into microbial electrolysis cells to generate hydrogen energy from various organic matters. This article provides a comprehensive and state‐of‐the‐art review of possible applications of the MFC technology. This also points out the various challenges that limit MFC performance. Finally, this article identifies the strategies to improve MFC performance for different applications. Copyright © 2017 John Wiley & Sons, Ltd. Highlights State‐of‐the‐art information on major applications of MFCs and strategies to improve them is provided in this article. The basic principles of all the applications are thoroughly discussed. The obstacles that limit the technology to use in real‐world applications are reported. Many approaches such as electrode modification and genetic engineering can be utilized to improve MFC performances. The MFC applications are usually centered for investigation to either chamber of the MFC system. For example, treatment of wastewater can be examined in the anode chamber and biohydrogen production in the cathode chamber. The other applications such as bioremediation, biosensors, and microbial community analysis can be performed either in the anode or the cathode. Therefore, significant modifications can be made in the anode/cathode chamber to improve the performance of the MFC for the targeted application.
AbstractList Summary Microbial fuel cells (MFCs) are emerging as a versatile renewable energy technology. This is particularly because of the multidimensional applications of this eco-friendly technology. The technology depends on the electroactive bacteria, popularly known as exoelectrogens, to simultaneously produce electric power and treat wastewater. Electrode modifications with nanomaterials such as gold nanoparticles and iron oxide nanoparticles or pretreatment methods such as sonication and autoclave sterilization have shown promising results in enhancing MFC performance for electricity generation and wastewater treatment. The MFC technology has been also investigated for the removal of various heavy metals and toxic elements, and to detect the presence of toxic elements in wastewater. In addition, the MFCs can be modified into microbial electrolysis cells to generate hydrogen energy from various organic matters. This article provides a comprehensive and state-of-the-art review of possible applications of the MFC technology. This also points out the various challenges that limit MFC performance. Finally, this article identifies the strategies to improve MFC performance for different applications. Copyright © 2017 John Wiley & Sons, Ltd. Highlights State-of-the-art information on major applications of MFCs and strategies to improve them is provided in this article. The basic principles of all the applications are thoroughly discussed. The obstacles that limit the technology to use in real-world applications are reported. Many approaches such as electrode modification and genetic engineering can be utilized to improve MFC performances.
Summary Microbial fuel cells (MFCs) are emerging as a versatile renewable energy technology. This is particularly because of the multidimensional applications of this eco‐friendly technology. The technology depends on the electroactive bacteria, popularly known as exoelectrogens, to simultaneously produce electric power and treat wastewater. Electrode modifications with nanomaterials such as gold nanoparticles and iron oxide nanoparticles or pretreatment methods such as sonication and autoclave sterilization have shown promising results in enhancing MFC performance for electricity generation and wastewater treatment. The MFC technology has been also investigated for the removal of various heavy metals and toxic elements, and to detect the presence of toxic elements in wastewater. In addition, the MFCs can be modified into microbial electrolysis cells to generate hydrogen energy from various organic matters. This article provides a comprehensive and state‐of‐the‐art review of possible applications of the MFC technology. This also points out the various challenges that limit MFC performance. Finally, this article identifies the strategies to improve MFC performance for different applications. Copyright © 2017 John Wiley & Sons, Ltd. Highlights State‐of‐the‐art information on major applications of MFCs and strategies to improve them is provided in this article. The basic principles of all the applications are thoroughly discussed. The obstacles that limit the technology to use in real‐world applications are reported. Many approaches such as electrode modification and genetic engineering can be utilized to improve MFC performances. The MFC applications are usually centered for investigation to either chamber of the MFC system. For example, treatment of wastewater can be examined in the anode chamber and biohydrogen production in the cathode chamber. The other applications such as bioremediation, biosensors, and microbial community analysis can be performed either in the anode or the cathode. Therefore, significant modifications can be made in the anode/cathode chamber to improve the performance of the MFC for the targeted application.
Author Kumar, Ravinder
Hai, Faisal I.
Singh, Lakhveer
Zularisam, A. W.
Author_xml – sequence: 1
  givenname: Ravinder
  surname: Kumar
  fullname: Kumar, Ravinder
  organization: Universiti Malaysia Pahang
– sequence: 2
  givenname: Lakhveer
  surname: Singh
  fullname: Singh, Lakhveer
  email: lakhveer@ump.edu.my, lucki.chem09@gmail.com
  organization: Universiti Malaysia Pahang
– sequence: 3
  givenname: A. W.
  surname: Zularisam
  fullname: Zularisam, A. W.
  organization: Universiti Malaysia Pahang
– sequence: 4
  givenname: Faisal I.
  surname: Hai
  fullname: Hai, Faisal I.
  organization: University of Wollongong
BookMark eNotUF1LwzAUDTLBbYp_IeCjdiZN0ya-icwPmAiisLeSdrddRprUpNvYL_HvmjG5D4d777nnXM4EjayzgNA1JTNKSHoPfsYKQc7QmBIpE0qz5QiNCctZIkmxvECTEDaExB0txuj3XdfeVVoZ3GzB4BqMwTpg6MC32rZYBazwDnxQgzaAB6jX1hnXHh7i3MNOwx47i_UQcO9C0FUkqb43uo4HzoY7XK-VMWBbiEp2hcPg1QCtju3gsO5673ZRdw24B9843ylbQ7hE540yAa7-cYq-n-dfT6_J4uPl7elxkdRMMpKohhRM5kpUKaF5LFEBJRUlXMoKuMhEwWGVVYpLlTO6yngmZC3zVPJUVk3BpujmpBvf-NlCGMqN23obLUsqhWCC85RH1u2JtY8ZHMre6075Q0lJeYy8BF8eIy_nn0dgf5Y_eMw
CitedBy_id crossref_primary_10_1016_j_jbiosc_2018_11_004
crossref_primary_10_1016_j_jenvman_2022_116065
crossref_primary_10_1016_j_chemosphere_2021_131856
crossref_primary_10_1016_j_seta_2022_102560
crossref_primary_10_1080_09593330_2018_1442502
crossref_primary_10_1016_j_envres_2020_110195
crossref_primary_10_1002_bmb_21702
crossref_primary_10_1021_acsanm_3c04786
crossref_primary_10_1016_j_energy_2023_128804
crossref_primary_10_1016_j_bioelechem_2019_107351
crossref_primary_10_1016_j_ijhydene_2019_08_115
crossref_primary_10_1016_j_rser_2020_109763
crossref_primary_10_1016_j_envres_2022_112930
crossref_primary_10_22207_JPAM_15_4_74
crossref_primary_10_3390_ma13092078
crossref_primary_10_1016_j_ijhydene_2017_06_065
crossref_primary_10_3390_en13184735
crossref_primary_10_1016_j_cej_2019_123625
crossref_primary_10_1007_s10311_022_01555_1
crossref_primary_10_1186_s40068_021_00234_4
crossref_primary_10_14233_ajchem_2021_23081
crossref_primary_10_1016_j_egyr_2022_12_053
crossref_primary_10_1007_s13369_021_06248_5
crossref_primary_10_1007_s42835_021_00919_x
crossref_primary_10_1111_wej_12927
crossref_primary_10_1016_j_bcab_2022_102560
crossref_primary_10_1016_j_est_2022_104235
crossref_primary_10_1016_j_seta_2022_102183
crossref_primary_10_1002_er_4746
crossref_primary_10_1016_j_ijhydene_2020_01_077
crossref_primary_10_1016_j_ijhydene_2020_06_134
crossref_primary_10_3390_pr10091724
crossref_primary_10_1016_j_apenergy_2018_05_016
crossref_primary_10_1016_j_envres_2020_110010
crossref_primary_10_1016_j_biortech_2022_126844
crossref_primary_10_1016_j_mtsust_2023_100349
crossref_primary_10_1016_j_envres_2022_114818
crossref_primary_10_1016_j_jpowsour_2020_229290
crossref_primary_10_1016_j_rser_2018_12_027
crossref_primary_10_1016_j_coelec_2024_101540
crossref_primary_10_3390_en16124740
crossref_primary_10_1016_j_psep_2022_03_039
crossref_primary_10_1002_er_6403
crossref_primary_10_1016_j_chemosphere_2022_136454
crossref_primary_10_3390_pr8050583
crossref_primary_10_1007_s13204_021_01885_6
crossref_primary_10_1016_j_jhazmat_2021_125992
crossref_primary_10_3390_fermentation7040291
crossref_primary_10_3390_catal10080819
crossref_primary_10_1016_j_ces_2018_08_056
crossref_primary_10_1016_j_ijhydene_2023_03_291
crossref_primary_10_1016_j_fuel_2022_124341
crossref_primary_10_1016_j_chemosphere_2021_133295
crossref_primary_10_1016_j_jwpe_2020_101421
crossref_primary_10_2139_ssrn_4160398
crossref_primary_10_1039_D2SU00079B
crossref_primary_10_1016_j_jpowsour_2021_230688
crossref_primary_10_1016_j_jclepro_2019_02_172
crossref_primary_10_3389_fbioe_2021_612605
crossref_primary_10_1186_s13568_022_01479_7
crossref_primary_10_1016_j_fuel_2019_05_109
crossref_primary_10_1016_j_rser_2019_109551
crossref_primary_10_1007_s10800_022_01669_y
crossref_primary_10_1016_j_envres_2023_115843
crossref_primary_10_1016_j_rser_2019_109398
crossref_primary_10_1080_09593330_2020_1829088
crossref_primary_10_1016_j_chemosphere_2021_133437
crossref_primary_10_3390_molecules27217483
crossref_primary_10_1007_s11356_021_17529_9
crossref_primary_10_3389_fenrg_2022_843768
crossref_primary_10_1007_s10562_019_03018_9
crossref_primary_10_1007_s42770_019_00091_5
crossref_primary_10_1016_j_heliyon_2022_e09849
crossref_primary_10_1016_j_jclepro_2022_132855
crossref_primary_10_1016_j_rser_2020_110152
crossref_primary_10_1016_j_wasman_2021_03_029
crossref_primary_10_1149_2_0671915jes
crossref_primary_10_1007_s13762_022_04753_0
crossref_primary_10_1016_j_jenvman_2022_116538
crossref_primary_10_1016_j_fuproc_2023_107844
crossref_primary_10_3389_frobt_2021_558953
crossref_primary_10_1016_j_jece_2022_107505
crossref_primary_10_1002_jctb_7397
crossref_primary_10_4236_ajac_2019_109031
crossref_primary_10_1016_j_scitotenv_2021_147024
crossref_primary_10_1016_j_enconman_2022_115905
crossref_primary_10_1021_acsami_1c19767
crossref_primary_10_1039_D3EW00522D
crossref_primary_10_1007_s11356_023_25787_y
crossref_primary_10_1002_cbic_202000458
crossref_primary_10_1007_s00253_019_10091_y
crossref_primary_10_1016_j_jenvman_2022_114525
crossref_primary_10_1016_j_jece_2022_108664
crossref_primary_10_2139_ssrn_4119766
crossref_primary_10_1002_er_6053
crossref_primary_10_1016_j_jwpe_2020_101768
crossref_primary_10_1039_D3SE00975K
crossref_primary_10_1016_j_molliq_2021_117795
crossref_primary_10_1080_14786451_2023_2185869
crossref_primary_10_1016_j_scitotenv_2024_172737
crossref_primary_10_3390_w15020316
crossref_primary_10_1016_j_ijhydene_2020_11_084
crossref_primary_10_1002_er_5916
crossref_primary_10_3390_cleantechnol6020026
crossref_primary_10_1039_D0CY02443K
crossref_primary_10_1016_j_jclepro_2018_09_232
crossref_primary_10_3390_en16062760
crossref_primary_10_1016_j_jechem_2023_01_018
crossref_primary_10_1016_j_rser_2023_113813
crossref_primary_10_3390_en15061989
crossref_primary_10_1111_1440_1703_12134
crossref_primary_10_1016_j_bioelechem_2021_107749
crossref_primary_10_1016_j_biteb_2019_100376
crossref_primary_10_1016_j_scitotenv_2019_03_071
crossref_primary_10_1007_s13399_024_05636_9
crossref_primary_10_1039_D0TA07939A
crossref_primary_10_1002_admt_201900079
crossref_primary_10_1080_01614940_2022_2103980
crossref_primary_10_1002_ep_14191
crossref_primary_10_1007_s13399_020_00653_w
crossref_primary_10_1016_j_apenergy_2019_113938
crossref_primary_10_1016_j_jhazmat_2021_126123
crossref_primary_10_1016_j_chemosphere_2022_137072
crossref_primary_10_1002_jctb_5792
crossref_primary_10_3390_pr7040183
crossref_primary_10_1016_j_ijhydene_2022_05_188
crossref_primary_10_1016_j_watres_2019_115305
crossref_primary_10_1016_j_apenergy_2019_03_082
crossref_primary_10_1016_j_energy_2022_124163
crossref_primary_10_3390_en13184712
crossref_primary_10_1016_j_ijhydene_2021_09_021
crossref_primary_10_3390_s21113778
crossref_primary_10_1016_j_fuel_2019_115682
crossref_primary_10_3390_microorganisms8071092
crossref_primary_10_1016_j_coesh_2019_08_003
crossref_primary_10_1016_j_psep_2024_04_066
crossref_primary_10_1039_C9TA07466J
crossref_primary_10_1039_D2TA09732J
crossref_primary_10_21603_2074_9414_2024_1_2486
crossref_primary_10_1016_j_bioelechem_2019_06_002
crossref_primary_10_3390_ma15010379
crossref_primary_10_1016_j_chemosphere_2021_132285
ContentType Journal Article
Copyright Copyright © 2017 John Wiley & Sons, Ltd.
Copyright © 2018 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2017 John Wiley & Sons, Ltd.
– notice: Copyright © 2018 John Wiley & Sons, Ltd.
DBID 7SP
7ST
7TB
7TN
8FD
C1K
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
DOI 10.1002/er.3780
DatabaseName Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Oceanic Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-114X
EndPage 394
ExternalDocumentID ER3780
Genre reviewArticle
GrantInformation_xml – fundername: Universiti Malaysia Pahang (UMP)
  funderid: RDU 140379
– fundername: Universiti Malaysia Pahang under Internal Research Scheme
  funderid: RDU 140379
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAJEY
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BKSAR
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
FEDTE
G-S
G.N
G8K
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HCIFZ
HF~
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PCBAR
PIMPY
PTHSS
PYCSY
Q.N
Q11
QB0
QRW
R.K
RHX
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
7SP
7ST
7TB
7TN
8FD
C1K
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
ID FETCH-LOGICAL-c3930-af07396a8b20161618be10b10599be584875ed4ba59a631d45489c9629529bf73
IEDL.DBID DR2
ISSN 0363-907X
IngestDate Wed Oct 02 16:48:03 EDT 2024
Sat Aug 24 00:59:54 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3930-af07396a8b20161618be10b10599be584875ed4ba59a631d45489c9629529bf73
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/er.3780
PQID 1988385525
PQPubID 996365
PageCount 26
ParticipantIDs proquest_journals_1988385525
wiley_primary_10_1002_er_3780_ER3780
PublicationCentury 2000
PublicationDate February 2018
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: February 2018
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of energy research
PublicationYear 2018
Publisher Hindawi Limited
Publisher_xml – name: Hindawi Limited
References 2015; 140
2015; 71
2014; 818
2010; 101
2015; 143
2013; 128
2012; 14
2011; 196
2008; 100
2010; 22
2015; 137
2005; 100
2013; 53
2015; 88
2007; 9
2016; 42
2008; 24
2010; 195
2013; 110
2010; 192
2015; 90
2010; 3
2014; 126
2007; 169
2007; 167
2013; 109
2013; 229
2014; 48
2014; 151
2016; 91
2016; 17
2012; 105
2016; 163
2015; 195
2016; 2
2015; 190
2013; 79
2011; 90
2014; 38
2009; 100
2003; 25
2014; 39
2014; 264
2016; 174
2006; 103
2010; 55
2015; 180
2015; 39
2009; 43
2015; 187
2008; 78
2016; 220
2008; 74
2017; 233
2014; 62
2012; 204
2007; 37
2012; 208
2012; 51
2014; 4
2014; 2
2000
2015; 40
2011; 26
2014; 165
2014; 51
2005; 39
2014; 56
2015; 2
2014; 118
2015; 1
2015; 6
2013; 47
1991; 35
2008; 10
2008; 11
2004
2006; 4
2014; 111
2015; 7
2016; 57
2016; 56
2017; 109
2017; 94
2011; 102
2011; 108
2013; 38
2004; 19
2017
2016
2011; 45
2008; 179
2009; 4
2012; 89
2012; 5
2012; 87
2008; 80
References_xml – volume: 9
  start-page: 1323
  issue: 12
  year: 2007
  end-page: 1328
  article-title: A novel biomonitoring system using microbial fuel cells
  publication-title: Journal of Environmental Monitoring
– volume: 101
  start-page: 1533
  issue: 6
  year: 2010
  end-page: 1543
  article-title: A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production
  publication-title: Bioresource Technology
– volume: 24
  start-page: 4376
  year: 2008
  end-page: 4379
  article-title: Electricity generation by attached to gold electrodes
  publication-title: Langmuir
– volume: 195
  start-page: 46
  year: 2015
  end-page: 50
  article-title: Heat‐treated stainless steel felt as scalable anode material for bioelectrochemical systems
  publication-title: Bioresource Technology
– volume: 91
  start-page: 647
  issue: 3
  year: 2016
  end-page: 654
  article-title: Electricity generation and struvite recovery from human urine using microbial fuel cells
  publication-title: Journal of Chemical Technology and Biotechnology
– volume: 180
  start-page: 137
  year: 2015
  end-page: 143
  article-title: Performance of mixed‐species biocathode microbial fuel cells using saline mustard tuber wastewater as self‐buffered catholyte
  publication-title: Bioresource Technology
– volume: 53
  start-page: 339
  year: 2013
  end-page: 344
  article-title: Utilization of proteinaceous materials for power generation in a mediatorless microbial fuel cell by a new electrogenic bacteria VA5
  publication-title: Enzyme and Microbial Technology
– volume: 4
  start-page: 5373
  year: 2009
  end-page: 5381
  article-title: High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells
  publication-title: International Journal of Hydrogen Energy
– start-page: 1
  year: 2017
  end-page: 14
  article-title: Long‐term performance of a 20‐L continuous flow microbial fuel cell for treatment of brewery wastewater
  publication-title: Journal of Power Sources
– volume: 111
  start-page: 12883
  issue: 35
  year: 2014
  end-page: 12888
  article-title: MR‐1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components
  publication-title: Proceedings of the National Academy of Sciences
– volume: 39
  start-page: 1048
  issue: 8
  year: 2015
  end-page: 1067
  article-title: Exoelectrogens in microbial fuel cells toward bioelectricity generation: a review
  publication-title: International Journal of Energy Research
– volume: 179
  start-page: 571
  issue: 2
  year: 2008
  end-page: 575
  article-title: The first demonstration of a microbial fuel cell as a viable power supply: powering a meteorological buoy
  publication-title: Journal of Power Sources
– volume: 43
  start-page: 246
  year: 2009
  end-page: 251
  article-title: Electricity generation from starch processing wastewater using microbial fuel cell technology
  publication-title: Biochemical Engineering Journal
– volume: 208
  start-page: 170
  year: 2012
  end-page: 175
  article-title: Carbon supported cobalt oxide nanoparticles—iron phthalocyanine as alternative cathode catalyst for oxygen reduction in microbial fuel cells
  publication-title: Journal of Power Sources
– volume: 14
  start-page: 71
  year: 2012
  end-page: 74
  article-title: Decorating anode with bamboo‐like nitrogen‐doped carbon nanotubes for microbial fuel cells
  publication-title: Electrochemistry Communications
– volume: 108
  start-page: 9384
  year: 2011
  end-page: 9389
  article-title: Structure of a cell surface decaheme electron conduit
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 109
  start-page: 46
  year: 2017
  end-page: 53
  article-title: Enhanced MFC power production and struvite recovery by the addition of sea salts to urine
  publication-title: Water Research
– volume: 4
  year: 2006
  article-title: c‐Type cytochrome‐dependent formation of U(IV) nanoparticles by
  publication-title: PLoS Biology
– volume: 38
  start-page: 1416
  year: 2014
  end-page: 1423
  article-title: Power generation using polyaniline/multi‐walled carbon nanotubes as an alternative cathode catalyst in microbial fuel cells
  publication-title: International Journal of Energy Research
– volume: 19
  start-page: 607
  year: 2004
  end-page: 613
  article-title: Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor
  publication-title: Biosensors & Bioelectronics
– volume: 40
  start-page: 4263
  year: 2015
  end-page: 4268
  article-title: A novel small scale microbial fuel cell design for increased electricity generation and waste water treatment
  publication-title: International Journal of Hydrogen Energy
– volume: 47
  start-page: 4512
  year: 2013
  end-page: 4520
  article-title: Enhanced performance of hexavalent chromium reducing cathodes in the presence of MR‐1 and lactate
  publication-title: Environmental Science & Technology
– volume: 102
  start-page: 6304
  year: 2011
  end-page: 6307
  article-title: Removal of Hg as an electron acceptor coupled with power generation using a microbial fuel cell
  publication-title: Bioresource Technology
– volume: 22
  start-page: 832
  year: 2010
  end-page: 843
  article-title: Electric power generation from municipal, food, and animal wastewaters using microbial fuel cells
  publication-title: Electroanalysis
– volume: 100
  start-page: 5132
  year: 2009
  end-page: 5139
  article-title: Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber
  publication-title: Bioresource Technology
– volume: 11
  start-page: 1290
  year: 2008
  end-page: 1292
  article-title: Direct electrochemistry and electrocatalytic mechanism of evolved cells in microbial fuel cells
  publication-title: Chemical Communications
– volume: 174
  start-page: 251
  year: 2016
  end-page: 256
  article-title: Electrochemical evaluation of nano‐Mg(OH) /graphene as a catalyst for hydrogen evolution in microbial electrolysis cell
  publication-title: Fuel
– volume: 74
  start-page: 5943
  year: 2008
  end-page: 5947
  article-title: Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by
  publication-title: Applied and Environmental Microbiology
– volume: 103
  start-page: 11358
  year: 2006
  end-page: 11363
  article-title: Electrically conductive bacterial nanowires produced by strain MR‐1 and other exoelectrogens
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 169
  start-page: 198
  year: 2007
  end-page: 204
  article-title: Production of electricity from the treatment of urban waste water using a microbial fuel cell
  publication-title: Journal of Power Sources
– volume: 47
  start-page: 4934
  year: 2013
  end-page: 4940
  article-title: Kinetic, electrochemical, and microscopic characterization of the thermophilic, anode‐respiring bacterium
  publication-title: Environmental Science & Technology
– volume: 80
  start-page: 349
  year: 2008
  end-page: 355
  article-title: Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell
  publication-title: Applied Microbiology and Biotechnology
– volume: 35
  start-page: 128
  issue: 1
  year: 1991
  end-page: 133
  article-title: Biological fuel cells with sulphide storage capacity
  publication-title: Applied Microbiology and Biotechnology
– volume: 163
  start-page: 352
  year: 2016
  end-page: 360
  article-title: Energy‐positive nitrogen removal using the integrated short‐cut nitrification and autotrophic denitrification microbial fuel cells (MFCs)
  publication-title: Applied Energy
– volume: 51
  start-page: 269
  year: 2012
  end-page: 273
  article-title: Power generation from cellulose using mixed and pure cultures of cellulose‐degrading bacteria in a microbial fuel cell
  publication-title: Enzyme and Microbial Technology
– volume: 187
  start-page: 77
  year: 2015
  end-page: 83
  article-title: Suppression of methanogenesis for hydrogen production in single‐chamber microbial electrolysis cells using various antibiotics
  publication-title: Bioresource Technology
– volume: 102
  start-page: 2751
  year: 2011
  end-page: 2757
  article-title: as anodic biocatalyst for power generation in biofuel cell: influence of redox condition and substrate load
  publication-title: Bioresource Technology
– volume: 204
  start-page: 34
  year: 2012
  end-page: 39
  article-title: Simultaneous reduction of vanadium(V) and chromium(VI) with enhanced energy recovery based on microbial fuel cell technology
  publication-title: Journal of Power Sources
– volume: 90
  start-page: 2746
  year: 2011
  end-page: 2750
  article-title: Treatment of cassava mill wastewater and production of electricity through microbial fuel cell technology
  publication-title: Fuel
– volume: 39
  start-page: 4961
  year: 2005
  end-page: 4968
  article-title: Electricity generation from swine wastewater using microbial fuel cells
  publication-title: Water Research
– volume: 39
  start-page: 3079
  year: 2014
  end-page: 3086
  article-title: Methanogenesis control by electrolytic oxygen production in microbial electrolysis cells
  publication-title: International Journal of Hydrogen Energy
– volume: 62
  start-page: 308
  year: 2014
  end-page: 314
  article-title: A batch‐mode cube microbial fuel cell based ‘shock’ biosensor for wastewater quality monitoring
  publication-title: Biosensors & Bioelectronics
– volume: 220
  start-page: 537
  year: 2016
  end-page: 542
  article-title: Potential of porous Co O nanorods as cathode catalyst for oxygen reduction reaction in microbial fuel cells
  publication-title: Bioresource Technology
– volume: 110
  start-page: 98
  year: 2013
  end-page: 103
  article-title: Optimizing multi‐variables of microbial fuel cell for electricity generation with an integrated modeling and experimental approach
  publication-title: Applied Energy
– volume: 100
  start-page: 1088
  year: 2008
  end-page: 1098
  article-title: Glycerol fermentation by (open) mixed cultures: a chemostat study
  publication-title: Biotechnology and Bioengineering
– volume: 2
  start-page: 206
  issue: 8
  year: 2015
  end-page: 214
  article-title: Assessment of microbial fuel cell configurations and power densities
  publication-title: Environmental Science & Technology Letters
– volume: 17
  start-page: 1392
  issue: 9
  year: 2016
  article-title: Enhancing signal output and avoiding BOD/toxicity combined shock interference by operating a microbial fuel cell sensor with an optimized background concentration of organic matter
  publication-title: International Journal of Molecular Sciences
– volume: 233
  start-page: 176
  year: 2017
  end-page: 183
  article-title: Response of microbial community structure to pre‐acclimation strategies in microbial fuel cells for domestic wastewater treatment
  publication-title: Bioresource Technology
– volume: 151
  start-page: 332
  year: 2014
  end-page: 339
  article-title: Accelerated decolorization of azo dye Congo red in a combined bioanode–biocathode bioelectrochemical system with modified electrodes deployment
  publication-title: Bioresource Technology
– volume: 42
  start-page: 4342
  issue: 7
  year: 2016
  end-page: 4348
  article-title: A cathode‐shared microbial fuel cell sensor array for water alert system
  publication-title: International Journal of Hydrogen Energy
– volume: 1
  start-page: 279
  year: 2015
  end-page: 284
  article-title: Sediment microbial fuel cells for wastewater treatment: challenges and opportunities
  publication-title: Environmental Science: Water Research & Technology
– volume: 264
  start-page: 248
  year: 2014
  end-page: 253
  article-title: Carnation‐like MnO modified activated carbon air cathode improve power generation in microbial fuel cells
  publication-title: Journal of Power Sources
– volume: 192
  start-page: 467
  year: 2010
  end-page: 474
  article-title: The Mtr respiratory pathway is essential for reducing flavins and electrodes in
  publication-title: Journal of Bacteriology
– volume: 109
  start-page: 328
  year: 2013
  end-page: 332
  article-title: Microbial biofuel cell operating effectively through carbon nanotube blended with gold–titania nanocomposites modified electrode
  publication-title: Electrochimica Acta
– volume: 57
  start-page: 29371
  issue: 60
  year: 2016
  end-page: 29376
  article-title: Fe O ‐modified carbon cloth electrode for microbial fuel cells from organic wastewaters
  publication-title: Desalination and Water Treatment
– volume: 45
  start-page: 5025
  year: 2011
  end-page: 5031
  article-title: Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells
  publication-title: Environmental Science & Technology
– volume: 38
  start-page: 15716
  issue: 35
  year: 2013
  end-page: 15722
  article-title: Performance of liter‐scale microbial fuel cells with electrode arrays: effect of array pattern
  publication-title: International Journal of Hydrogen Energy
– volume: 25
  start-page: 541
  issue: 7
  year: 2003
  end-page: 545
  article-title: Novel BOD (biological oxygen demand) sensor using mediator‐less microbial fuel cell
  publication-title: Biotechnology Letters
– volume: 39
  start-page: 4673
  year: 2005
  end-page: 4682
  article-title: Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies
  publication-title: Water Research
– year: 2016
  article-title: Graphene/Fe O nanocomposites as efficient anodes to boost the lifetime and current output of microbial fuel cells
  publication-title: Chemistry—An Asian Journal
– volume: 196
  start-page: 5829
  issue: 14
  year: 2011
  end-page: 5834
  article-title: Flame synthesis of carbon nanostructures on stainless steel anodes for use in microbial fuel cells
  publication-title: Journal of Power Sources
– volume: 6
  start-page: 575
  year: 2015
  article-title: Microbial electron transport and energy conservation—the foundation for optimizing bioelectrochemical systems
  publication-title: Frontiers in Microbiology
– volume: 56
  start-page: 1322
  year: 2016
  end-page: 1336
  article-title: Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 229
  start-page: 198
  year: 2013
  end-page: 202
  article-title: Powering microbial electrolysis cells by capacitor circuits charged using microbial fuel cell
  publication-title: Journal of Power Sources
– volume: 105
  start-page: 81
  year: 2012
  end-page: 87
  article-title: Evaluation of potato‐processing wastewater treatment in a microbial fuel cell
  publication-title: Bioresource Technology
– volume: 195
  start-page: 66
  year: 2015
  end-page: 72
  article-title: A 90‐liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self‐sufficient mode
  publication-title: Bioresource Technology
– volume: 38
  start-page: 14348
  year: 2013
  end-page: 14355
  article-title: Identification of removal principles and involved bacteria in microbial fuel cells for sulfide removal and electricity generation
  publication-title: International Journal of Hydrogen Energy
– volume: 101
  start-page: 2729
  year: 2010
  end-page: 2734
  article-title: Palm oil mill effluent treatment using a two‐stage microbial fuel cells system integrated with immobilized biological aerated filters
  publication-title: Bioresource Technology
– volume: 102
  start-page: 411
  year: 2011
  end-page: 415
  article-title: Treatment of biodiesel production wastes with simultaneous electricity generation using a single‐chamber microbial fuel cell
  publication-title: Bioresource Technology
– volume: 137
  start-page: 151
  year: 2015
  end-page: 157
  article-title: Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode
  publication-title: Applied Energy
– volume: 51
  start-page: 228
  year: 2014
  end-page: 233
  article-title: Efficacy of single‐chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production
  publication-title: Water Research
– volume: 71
  start-page: 801
  year: 2015
  end-page: 809
  article-title: Microbial fuel cell‐based biosensors for environmental monitoring: a review
  publication-title: Water Science and Technology
– volume: 167
  start-page: 11
  year: 2007
  end-page: 17
  article-title: Voltage reversal during microbial fuel cell stack operation
  publication-title: Journal of Power Sources
– volume: 100
  start-page: 4171
  year: 2009
  end-page: 4175
  article-title: Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater
  publication-title: Bioresource Technology
– volume: 89
  start-page: 1177
  year: 2012
  end-page: 1182
  article-title: Bioelectrochemical recovery of ammonia–copper(II) complexes from wastewater using a dual chamber microbial fuel cell
  publication-title: Chemosphere
– volume: 818
  start-page: 15
  year: 2014
  end-page: 22
  article-title: Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor
  publication-title: Analytica Chimica Acta
– volume: 3
  start-page: 211
  year: 2010
  end-page: 217
  article-title: Specific localization of the c‐type cytochrome OmcZ at the anode surface in current‐producing biofilms of
  publication-title: Environmental Microbiology Reports
– volume: 26
  start-page: 3000
  year: 2011
  end-page: 3004
  article-title: Carbon nanotube powders as electrode modifier to enhance the activity of anodic biofilm in microbial fuel cells
  publication-title: Biosensors & Bioelectronics
– year: 2004
– volume: 190
  start-page: 367
  year: 2015
  end-page: 372
  article-title: Enhancing the response of microbial fuel cell based toxicity sensors to Cu(II) with the applying of flow‐through electrodes and controlled anode potentials
  publication-title: Bioresource Technology
– volume: 102
  start-page: 10221
  year: 2011
  end-page: 10229
  article-title: Microbial fuel cell based biosensor for monitoring of anaerobic digestion process
  publication-title: Bioresource Technology
– volume: 140
  start-page: 26
  year: 2015
  end-page: 33
  article-title: Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high‐performance microbial fuel cells anode
  publication-title: Chemosphere
– volume: 4
  start-page: 36458
  year: 2014
  end-page: 36463
  article-title: Isolation and characterization of an electrochemically active and cyanide‐degrading bacterium isolated from a microbial fuel cell
  publication-title: RSC Advances
– volume: 48
  start-page: 10482
  year: 2014
  end-page: 10488
  article-title: Improved hydrogen production in the microbial electrolysis cell by inhibiting methanogenesis using ultraviolet irradiation
  publication-title: Environmental Science & Technology
– volume: 78
  start-page: 873
  year: 2008
  end-page: 880
  article-title: Brewery wastewater treatment using air‐cathode microbial fuel cells
  publication-title: Applied Microbiology and Biotechnology
– volume: 79
  start-page: 6369
  year: 2013
  end-page: 6374
  article-title: U(VI) reduction by a diversity of outer surface c‐type cytochromes of
  publication-title: Applied and Environmental Microbiology
– volume: 118
  start-page: 533
  year: 2014
  end-page: 539
  article-title: Conversion of activated sludge reactors to microbial fuel cells for wastewater treatment coupled to electricity generation
  publication-title: Journal of Bioscience and Bioengineering
– volume: 90
  start-page: 1263
  year: 2015
  end-page: 1269
  article-title: Hydrogen production with polyaniline/multi‐walled carbon nanotube cathode catalysts in microbial electrolysis cells
  publication-title: Journal of Chemical Technology and Biotechnology
– volume: 128
  start-page: 454
  year: 2013
  end-page: 460
  article-title: Animal carcass wastewater treatment and bioelectricity generation in up‐flow tubular microbial fuel cells: effects of HRT and non‐precious metallic catalyst
  publication-title: Bioresource Technology
– volume: 100
  start-page: 872
  issue: 5
  year: 2008
  end-page: 881
  article-title: Proton transport inside the biofilm limits electrical current generation by anode‐respiring bacteria
  publication-title: Biotechnology and Bioengineering
– volume: 56
  start-page: 19
  year: 2014
  end-page: 25
  article-title: Enhancement of bioelectricity generation by cofactor manipulation in microbial fuel cell
  publication-title: Biosensors & Bioelectronics
– volume: 7
  start-page: 815
  year: 2015
  end-page: 823
  article-title: Enhancing bidirectional electron transfer of by a synthetic flavin pathway
  publication-title: ACS Synthetic Biology
– volume: 10
  start-page: 2505
  year: 2008
  end-page: 2514
  article-title: Power output and columbic efficiencies from biofilms of comparable to mixed community microbial fuel cells
  publication-title: Environmental Microbiology
– start-page: 367
  year: 2017
  end-page: 384
– volume: 87
  start-page: 164
  year: 2012
  end-page: 171
  article-title: Microbial analysis of anodic biofilm in a microbial fuel cell using slaughterhouse wastewater
  publication-title: Bioelectrochemistry
– volume: 62
  start-page: 308
  year: 2014
  end-page: 314
  article-title: A batch‐mode cube microbial fuel cell based ‘shock’ biosensor for wastewater quality monitoring
  publication-title: Biosensors and Bioelectronics
– volume: 126
  start-page: 136
  year: 2014
  end-page: 141
  article-title: Simultaneous electricity generation and pollutant removal in microbial fuel cell with denitrifying biocathode over nitrite
  publication-title: Applied Energy
– volume: 101
  start-page: 469
  year: 2010
  end-page: 475
  article-title: Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures
  publication-title: Bioresource Technology
– year: 2000
  article-title: ‘Gastronome’—a pioneering food powered mobile robot
– volume: 2
  start-page: 336
  issue: 2
  year: 2016
  end-page: 343
  article-title: Pee power urinal—microbial fuel cell technology field trials in the context of sanitation
  publication-title: Environmental Science: Water Research & Technology
– volume: 143
  start-page: 72
  year: 2015
  end-page: 79
  article-title: Enhanced power generation using controlled inoculum from palm oil mill effluent fed microbial fuel cell
  publication-title: Fuel
– volume: 39
  start-page: 5037
  issue: 13
  year: 2005
  end-page: 5042
  article-title: Wireless sensors powered by microbial fuel cells
  publication-title: Environmental Science & Technology
– volume: 195
  start-page: 2586
  year: 2010
  end-page: 2591
  article-title: Manganese dioxide as a new cathode catalyst in microbial fuel cells
  publication-title: Journal of Power Sources
– volume: 94
  start-page: 344
  year: 2017
  end-page: 350
  article-title: A novel microbial fuel cell sensor with biocathode sensing element
  publication-title: Biosensors and Bioelectronics
– volume: 165
  start-page: 27
  year: 2014
  end-page: 30
  article-title: Enhanced current production by biofilm in a mediator‐less microbial fuel cell
  publication-title: Bioresource Technology
– volume: 5
  start-page: 1039
  year: 2012
  end-page: 1046
  article-title: Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics
  publication-title: ChemSusChem
– volume: 88
  start-page: 377
  year: 2015
  end-page: 384
  article-title: Microbial electrolysis cells with polyaniline/multi‐walled carbon nanotube‐modified biocathodes
  publication-title: Energy
– volume: 37
  start-page: 315
  issue: 4
  year: 2007
  end-page: 377
  article-title: Hybrid treatment systems for dye wastewater
  publication-title: Critical Reviews in Environmental Science and Technology
– volume: 4
  start-page: 5628
  year: 2014
  article-title: Cell‐secreted flavins bound to membrane cytochromes dictate electron transfer reactions to surfaces with diverse charge and pH
  publication-title: Scientific Reports
– volume: 55
  start-page: 99
  year: 2010
  end-page: 104
  article-title: A study of electron‐shuttle mechanism in based microbial fuel cells
  publication-title: Environmental Science & Technology
– volume: 100
  start-page: 260
  year: 2005
  end-page: 265
  article-title: Hydrogen and ethanol production from glycerol‐containing wastes discharged after biodiesel manufacturing process
  publication-title: Journal of Bioscience and Bioengineering
– volume: 2
  start-page: 1
  year: 2014
  end-page: 8
  article-title: High resolution AFM and single‐cell resonance Raman spectroscopy of biofilms early in growth
  publication-title: Front Energy Res
SSID ssj0009917
Score 2.6012046
Snippet Summary Microbial fuel cells (MFCs) are emerging as a versatile renewable energy technology. This is particularly because of the multidimensional applications...
Summary Microbial fuel cells (MFCs) are emerging as a versatile renewable energy technology. This is particularly because of the multidimensional applications...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 369
SubjectTerms Autoclaving
Bacteria
Biochemical fuel cells
bioremediation
biosensor
Electric power
Electric power generation
Electric power sources
Electricity distribution
electricity generation
Electrodes
Electrolysis
Electrolytic cells
Energy technology
Environmental management
Fuel cells
Fuel technology
Genetic engineering
Gold
Heavy metals
hydrogen production
Hydrogen-based energy
Iron oxides
Metals
microbial fuel cell
Microorganisms
Nanomaterials
Nanoparticles
Nanotechnology
Pretreatment
Removal
Renewable energy
Renewable energy technologies
Renewable resources
Resource management
Sonication
State-of-the-art reviews
Sterilization
Technology
Wastewater
Wastewater treatment
Title Microbial fuel cell is emerging as a versatile technology: a review on its possible applications, challenges and strategies to improve the performances
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.3780
https://www.proquest.com/docview/1988385525/abstract/
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELUQEwx8IwoF3dCRtE3iJDYbQq0qpDJUVKpYIjt2REWVVk268Ef4u9wlTVuYEFOU6Gw58Z3z7ux7x1iLh76r3TBxuAmVg3faUUYZJ0q54EqmPJKU7zx8CQdj_jwJJjulvip-iE3AjSyjXK_JwJXOO1vSULts-5Egb51o9AgOjbbEUYh6onqXEt2_SZUuSy0763Y_EOUuLi1_LP1j9lYPqTpP8tFeFbqdfP5ia_zXmE_Y0RpuwmOlH6dsz2Zn7HCHhPCcfQ2nJRkTiqUrOwMK5cM0B8ocpgpGoHJQQKc3cBJnFopNMP4Bn1epLzDPYFrksJiTiaHQ7r74PSR1xRbsKTOQFzU_BRRzmJZhDez33cJim8aQX7Bxv_f6NHDW5RqcxJd-11Ep7fqFSmiPcGToCm3driYAJ7VFoIOukTVcq0Aq1BDD0VmSiQw9GXhSp5F_yfazeWavGAiVmKhrcR1WlruKa849Y0zihaLLUekarFlPXry2uTx2pRC-CAIvaLBWOQvxomLsiCtuZi-2y5i-f9wb0eX6b2I37ABfSFRHtZtsv1iu7C0ikULflUr3DWHB3Y8
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQGYCBN-JR4AZG0jaJk9hsCFGVRxkQlSoxRHbsiAiUVE268Ef4u5zzaAsTYooSnS0nvnO-O999JuSC-q4tbT-yqPKFhXfSEkooK4gpo4LHNOCm3nn45A9G9H7sjeusSlMLU_FDzANuxjLK9doYuAlIdxesoXracQOG7voqGrtXulPPC-ooxD1Bs0-JDuC4Kpg1Tbt1wx-YchmZlr-W_hZ5bQZVZZS8d2aF7ESfv_ga_zfqbbJZI064rlRkh6zodJdsLPEQ7pGvYVLyMaFYPNMfYKL5kORgiofNIUYgchBgEjhwHj80FPN4_BU-r6pfIEshKXKYZMbKUGh5a_wSoubQFuwpVZAXDUUFFBkkZWQD-33TMFlUMuT7ZNS_fbkZWPWJDVbkcrdnidhs_PmCScdASd9mUts9aTAclxqxDnpHWlEpPC5QSRRFf4lH3He453AZB-4BaaVZqg8JMBGpoKdxKRaa2oJKSh2lVOT4rEdR745Iu5m9sDa7PLQ5Yy7zPMc7IhflNISTirQjrOiZnVBPQ_P9w9tnczn-m9g5WRu8DB_Dx7unhxOyji_HqsztNmkV05k-RWBSyLNSA78BRwvhsQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQSAgO7IidOfRI2iZxEpsbolRsrRCiUsUlsmNHVFRp1aQXfoTfZZyFBk6IU5TIdux4xnkz9rwhpEF915a2H1lU-cLCO2kJJZQVxJRRwWMacBPv3Ov7twN6P_SGtVRfBT_Et8PNaEa-XhsFn6q4tSAN1bOmGzC01lfwDY4R6M7zgjkKYU9QbVOi_Tcs4mVN1VZZ8QekrAPT_M_S3SSvVZ-KAyXvzXkmm9HHL7rGf3V6i2yUeBOuCgHZJks62SHrNRbCXfLZG-VsTFgsnusxGF8-jFIwocMmhRGIFASY4xs4i2MN2bc3_hKfF7EvMElglKUwnRgdw0L1jfELiKqULdhSoiDNKoIKyCYwyv0a2O6bhukijiHdI4Puzcv1rVXma7Ail7ttS8Rm288XTDoGSPo2k9puS4PguNSIdNA20opK4XGBIqIoWks84r7DPYfLOHD3yXIySfQBASYiFbQ1LsRCU1tQSamjlIocn7UpSt0hOakmLyyVLg1tzpjLPM_xDkkjn4VwWlB2hAU5sxPqWWi-f3jzbC5Hfyt2TlafOt3w8a7_cEzWcGysOLZ9Qpaz2VyfIirJ5Fkuf1_JB-Bg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+fuel+cell+is+emerging+as+a+versatile+technology%3A+a+review+on+its+possible+applications%2C+challenges+and+strategies+to+improve+the+performances&rft.jtitle=International+journal+of+energy+research&rft.au=Kumar%2C+Ravinder&rft.au=Singh%2C+Lakhveer&rft.au=Zularisam%2C+A+W&rft.au=Hai%2C+Faisal+I&rft.date=2018-02-01&rft.pub=Hindawi+Limited&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=42&rft.issue=2&rft.spage=369&rft_id=info:doi/10.1002%2Fer.3780&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon