Docosahexaenoic acid suppresses nitric oxide production and inducible nitric oxide synthase expression in interferon-γ plus lipopolysaccharide-stimulated murine macrophages by inhibiting the oxidative stress

N-3 polyunsaturated fatty acids (PUFAs) are known to have anti-inflammatory effects. Excess production of nitric oxide (NO) is associated with inflammation. Therefore, we examined the effects of PUFAs on NO production and inducible NO synthase (iNOS) expression by stimulated murine macrophages. One...

Full description

Saved in:
Bibliographic Details
Published inFree radical biology & medicine Vol. 34; no. 8; pp. 1006 - 1016
Main Authors Komatsu, Wataru, Ishihara, Kenji, Murata, Masakazu, Saito, Hiroaki, Shinohara, Kazuki
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.04.2003
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:N-3 polyunsaturated fatty acids (PUFAs) are known to have anti-inflammatory effects. Excess production of nitric oxide (NO) is associated with inflammation. Therefore, we examined the effects of PUFAs on NO production and inducible NO synthase (iNOS) expression by stimulated murine macrophages. One typical n-3 PUFA docosahexaenoic acid (DHA) strongly inhibited NO production and iNOS expression in RAW264 macrophages and mouse peritoneal macrophages in a dose-dependent manner. This inhibition was accompanied by inhibiting the oxidative stress-sensitive transcription factor nuclear factor (NF)-κB activation. In stimulated macrophages, intracellular peroxides level was enhanced, but pretreatment of DHA dose-dependently inhibited this enhancement. These results suggest that DHA has an antioxidative effect based on the inhibition of the accumulation of intracellular peroxides, and this inhibition caused the suppression of the activation of NF-κB, resulting in the inhibition of NO production and iNOS expression. On the other hand, DHA treatment enhanced the level of intracellular glutathione (GSH), and this enhancement is thought to mediate the activity of DHA because lowering the GSH level by inhibiting GSH biosynthesis reversed the DHA-induced suppression of NO production, NF-κB activation, and the accumulation of intracellular peroxides. Our results demonstrate that DHA inhibits NO production in macrophages and this inhibition is, in part, mediated by upregulation of GSH.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0891-5849
1873-4596
DOI:10.1016/S0891-5849(03)00027-3