Closed-Loop Control of Functional Electrical Stimulation Using a Selectively Recording and Bidirectional Nerve Cuff Interface

Discriminating recorded afferent neural information can provide sensory feedback for closed-loop control of functional electrical stimulation, which restores movement to paralyzed limbs. Previous work achieved state-of-the-art off-line classification of electrical activity in different neural pathwa...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 32; pp. 504 - 513
Main Authors Hwang, Yi-Chin E., Long, Liam, Filho, José Sales, Genov, Roman, Zariffa, José
Format Journal Article
LanguageEnglish
Published United States The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
IEEE
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Discriminating recorded afferent neural information can provide sensory feedback for closed-loop control of functional electrical stimulation, which restores movement to paralyzed limbs. Previous work achieved state-of-the-art off-line classification of electrical activity in different neural pathways recorded by a multi-contact nerve cuff electrode, by applying deep learning to spatiotemporal neural patterns. The objective of this study was to demonstrate the feasibility of this approach in the context of closed-loop stimulation. Acute in vivo experiments were conducted on 11 Long Evans rats to demonstrate closed-loop stimulation. A 64-channel ( 8×8 ) nerve cuff electrode was implanted on each rat's sciatic nerve for recording and stimulation. A convolutional neural network (CNN) was trained with spatiotemporal signal recordings associated with 3 different states of the hindpaw (dorsiflexion, plantarflexion, and pricking of the heel). After training, firing rates were reconstructed from the classifier outputs for each of the three target classes. A rule-based closed-loop controller was implemented to produce ankle movement trajectories using neural stimulation, based on the classified nerve recordings. Closed-loop stimulation was successfully demonstrated in 6 subjects. The number of successful movement sequence trials per subject ranged from 1-17 and number of correct state transitions per trial ranged from 3-53. This work demonstrates that a CNN applied to multi-contact nerve cuff recordings can be used for closed-loop control of functional electrical stimulation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2024.3355063