A new clustering routing method based on PECE for WSN

A new clustering routing method based on predictive energy consumption efficiency (PECE) for a wireless sensor network (WSN) is presented in this paper. It consists of two stages: cluster formation and stable data transfer. In the cluster formation stage, we design an energy-saving clustering routin...

Full description

Saved in:
Bibliographic Details
Published inEURASIP journal on wireless communications and networking Vol. 2015; no. 1; pp. 1 - 13
Main Authors Zhang, De-gan, Wang, Xiang, Song, Xiao-dong, Zhang, Ting, Zhu, Ya-nan
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 09.06.2015
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A new clustering routing method based on predictive energy consumption efficiency (PECE) for a wireless sensor network (WSN) is presented in this paper. It consists of two stages: cluster formation and stable data transfer. In the cluster formation stage, we design an energy-saving clustering routing algorithm based on the node degree, the relative distance between nodes, and the rest energy of nodes. When this algorithm selects the cluster head, the node degree and the relative distance between the nodes are fully considered, so the selected cluster not only has better coverage performance but also short average distance from other member nodes in the formative cluster; therefore, the cost of communications within the clusters is small. In the stable data transfer stage, by using bee colony optimization (BCO), we design a PECE strategy for data transmission. On the basis of considering the predictive values of energy consumption, the hops, and the propagation delay on this route, this strategy gives a precise definition of the route yield by using two types of bee agent to predict the route yield of each routing path from the source node to the sink node. Through the optimization design of the algorithm, it can improve the quality of clusters, thereby increasing the overall network performance, and reduces and balances the energy consumption of whole network and prolongs the survival time of the network.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1687-1499
1687-1472
1687-1499
DOI:10.1186/s13638-015-0399-x