Design of Cooperative Output Regulators for Heterogeneous Uncertain Nonlinear Multiagent Systems

Cooperative output regulation (COR) of multiagent systems having heterogeneous uncertain nonlinear dynamics is often challenging because of the complex system dynamics and the coupling among agents. This article develops an adaptive internal model-based distributed regulator such that the outputs of...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 52; no. 6; pp. 5174 - 5183
Main Authors Guo, Meichen, Xu, Dabo, Liu, Lu
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cooperative output regulation (COR) of multiagent systems having heterogeneous uncertain nonlinear dynamics is often challenging because of the complex system dynamics and the coupling among agents. This article develops an adaptive internal model-based distributed regulator such that the outputs of a network of nonlinear agents are all regulated to a reference despite external disturbances. Specifically, we consider heterogeneous agents having nonlinear strict-feedback forms, with nonidentical unknown control directions, and subject to an unknown linear exosystem. Addressing the nonlinear COR problem shows the capability and flexibility of the proposed output regulator. The simulation results of output synchronization of Lorenz systems and cooperative tracking control of multiple ships are presented to show the capability of the proposed regulator.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2020.3027961