The cholinesterase inhibitor DFP facilitates the expression of paradoxical sleep (PS) propensity in rats subjected to short-term PS deprivation

Short-term paradoxical sleep (PS) deprivation was used to examine the effects of chronic exposure to subtoxic doses of the cholinesterase inhibitor diisopropylfluorophosphate (DFP) on PS regulation. Rats were injected once daily with DFP (0.2 mg/kg per day; s.c.) for 11 consecutive days; control rat...

Full description

Saved in:
Bibliographic Details
Published inBrain research Vol. 965; no. 1; pp. 180 - 186
Main Authors Deurveilher, Samuel, Hennevin, Elizabeth
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 07.03.2003
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Short-term paradoxical sleep (PS) deprivation was used to examine the effects of chronic exposure to subtoxic doses of the cholinesterase inhibitor diisopropylfluorophosphate (DFP) on PS regulation. Rats were injected once daily with DFP (0.2 mg/kg per day; s.c.) for 11 consecutive days; control rats received a daily injection of oil vehicle. The experiment was conducted on the 10th and 11th days of treatment, when brain cholinesterase inhibition induced by DFP exposure was maximal. On the 10th day, an 8-h baseline recording was carried out. On the 11th day, a 6-h PS deprivation was carried out by manually awaking rats each time they showed polygraphic signs of PS; recordings were then continued for another 2 h to examine recovery sleep. During deprivation, though they slept less than controls, DFP-treated rats made more attempts to enter PS. After deprivation, their PS rebound had an overall amount comparable to that of the controls, but its time course was shortened: whereas PS elevation was manifested through the 2 h of recovery in the control group, it occurred only during the first hour in the DFP group. These results demonstrate that chronic, low-level DFP exposure facilitated the expression of the PS propensity that accumulated as a result of PS deprivation: it enhanced the tendency for PS during deprivation; it accelerated the rate of compensatory PS expression after deprivation. They support the hypothesis that DFP promotes PS initiation by increasing cholinergic transmission.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0006-8993
1872-6240
DOI:10.1016/S0006-8993(02)04171-9