The rat Na+-sulfate cotransporter rNaS2: functional characterization, tissue distribution, and gene (slc13a4) structure

Inorganic sulfate is essential for numerous functions in mammalian physiology. In the present study, we characterized the functional properties of the rat Na+-sulfate cotransporter NaS2 (rNaS2), determined its tissue distribution, and identified its gene (slc13a4) structure. Expression of rNaS2 prot...

Full description

Saved in:
Bibliographic Details
Published inPflügers Archiv Vol. 450; no. 4; pp. 262 - 268
Main Authors Dawson, Paul A, Pirlo, Katrina J, Steane, Sarah E, Nguyen, Kim A, Kunzelmann, Karl, Chien, Yu Ju, Markovich, Daniel
Format Journal Article
LanguageEnglish
Published Germany Springer Nature B.V 01.07.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Inorganic sulfate is essential for numerous functions in mammalian physiology. In the present study, we characterized the functional properties of the rat Na+-sulfate cotransporter NaS2 (rNaS2), determined its tissue distribution, and identified its gene (slc13a4) structure. Expression of rNaS2 protein in Xenopus oocytes led to a Na+-dependent transport of sulfate that was inhibited by phosphate, thiosulfate, tungstate, selenate, oxalate, and molybdate, but not by citrate, succinate, or DIDS. Transport kinetics of rNaS2 determined a K(M) for sulfate of 1.26 mM. Na+ kinetics determined a Hill coefficient of n=3.0+/-0.7, suggesting a Na+:SO4 (2-) stoichiometry of 3:1. rNaS2 mRNA was highly expressed in placenta, with lower levels found in the brain and liver. slc13a4 maps to rat chromosome 4 and contains 17 exons, spanning over 46 kb in length. This gene produces two alternatively spliced transcripts, of which the transcript lacking exon 2 is the most abundant form. Its 5' flanking region contains CAAT- and GC-box motifs and a number of putative transcription factor binding sites, including GATA-1, SP1, and AP-2 consensus sequences. This is the first study to characterize rNaS2 transport kinetics, define its tissue distribution, and resolve its gene (slc13a4) structure and 5' flanking region.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0031-6768
1432-2013
DOI:10.1007/s00424-005-1414-6