Effect of dilution rate on dynamic and steady-state biofilm characteristics during phenol biodegradation by immobilized Pseudomonas desmolyticum cells in a pulsed plate bioreactor

Pulsed plate bioreactor (PPBR) is a biofilm reactor which has been proven to be very efficient in phenol biodegradation. The present paper reports the studies on the effect of dilution rate on the physical, chemical and morphological characteristics of biofilms formed by the cells of Pseudomonas des...

Full description

Saved in:
Bibliographic Details
Published inFrontiers of environmental science & engineering Vol. 10; no. 4; pp. 81 - 89
Main Authors Rangappa, Veena Bangalore, Kodialbail, Vidya Shetty, Bharthaiyengar, Saidutta Malur
Format Journal Article
LanguageEnglish
Published Beijing Higher Education Press 01.08.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pulsed plate bioreactor (PPBR) is a biofilm reactor which has been proven to be very efficient in phenol biodegradation. The present paper reports the studies on the effect of dilution rate on the physical, chemical and morphological characteristics of biofilms formed by the cells of Pseudomonas desmolyticum on granular activated carbon (GAC) in PPBR during biodegradation of phenol. The percentage degradation of phenol decreased from 99% to 73% with an increase in dilution rate from 0.33 h^-1 to 0.99 h^-1 showing that residence time in the reactor governs the phenol removal efficiency rather than the external mass transfer limitations. Lower dilution rates favor higher production of biomass, extracellular polymeric substances (EPS) as well as the protein, carbohydrate and humic substances content of EPS. Increase in dilution rate leads to decrease in biofilm thickness, biofilm dry density, and attached dry biomass, transforming the biofilm from dense, smooth compact structure to a rough and patchy structure. Thus, the performance of PPBR in terms of dynamic and steady-state biofilm characteristics associated with phenol biodegradation is a strong function of dilution rate. Operation of PPBR at lower dilution rates is recommended for continuous biological treatment of wastewaters for phenol removal.
Bibliography:Biofilm Exopolymeric substances PhenolDilution rate Pulsed plate bioreactor
Pulsed plate bioreactor (PPBR) is a biofilm reactor which has been proven to be very efficient in phenol biodegradation. The present paper reports the studies on the effect of dilution rate on the physical, chemical and morphological characteristics of biofilms formed by the cells of Pseudomonas desmolyticum on granular activated carbon (GAC) in PPBR during biodegradation of phenol. The percentage degradation of phenol decreased from 99% to 73% with an increase in dilution rate from 0.33 h^-1 to 0.99 h^-1 showing that residence time in the reactor governs the phenol removal efficiency rather than the external mass transfer limitations. Lower dilution rates favor higher production of biomass, extracellular polymeric substances (EPS) as well as the protein, carbohydrate and humic substances content of EPS. Increase in dilution rate leads to decrease in biofilm thickness, biofilm dry density, and attached dry biomass, transforming the biofilm from dense, smooth compact structure to a rough and patchy structure. Thus, the performance of PPBR in terms of dynamic and steady-state biofilm characteristics associated with phenol biodegradation is a strong function of dilution rate. Operation of PPBR at lower dilution rates is recommended for continuous biological treatment of wastewaters for phenol removal.
10-1013/X
Phenol
Biofilm
Document accepted on :2016-04-29
Dilution rate
Exopolymeric substances
Pulsed plate bioreactor
Document received on :2016-03-12
ISSN:2095-2201
2095-221X
DOI:10.1007/s11783-016-0863-9