VDR and deubiquitination control neuronal oxidative stress and microglial inflammation in Parkinson's disease

Close correlation between vitamin D (VitD) deficiency and Parkinson's Disease (PD) risk, VitD as an adjuvant treatment promising to improve PD progression. However, VitD excessive intake could induce hypercalcemia and renal damage. Therefore, upregulation of vitD receptor (VDR) is considered a...

Full description

Saved in:
Bibliographic Details
Published inCell death discovery Vol. 10; no. 1; p. 150
Main Authors Zheng, Zihui, Chen, Miao, Feng, Shengliang, Zhao, Huanhuan, Qu, Tiange, Zhao, Xudong, Ruan, Qinli, Li, Lei, Guo, Jun
Format Journal Article
LanguageEnglish
Published United States Springer Nature B.V 21.03.2024
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Close correlation between vitamin D (VitD) deficiency and Parkinson's Disease (PD) risk, VitD as an adjuvant treatment promising to improve PD progression. However, VitD excessive intake could induce hypercalcemia and renal damage. Therefore, upregulation of vitD receptor (VDR) is considered a compensatory strategy to overcome VitD insufficiency and alleviate PD symptoms. In this study, we discovered that VDR played antioxidative roles in dopaminergic neurons by decreasing reactive oxygen species (ROS) and maintaining mitochondrial membrane potential. Further, we newly identified VDR downstream events in C. elegans, including glutathione S-transferase (gst) and forkhead box transcription factor class O (daf-16) mediated oxidative stress resistance. VDR upregulation also mitigated microglial activation through inhibition of NLRP3/caspase-1-mediated inflammation and membrane permeabilization. These findings highlight the multifaceted protective effects of VDR in both neurons and microglia against the development of PD. Importantly, we discovered a novel deubiquitinase DUB3, whose N-terminal catalytic domain interacted with the C-terminal ligand-binding domain of VDR to reduce VDR ubiquitination. Identification of DUB3 as an essential player in the deubiquitinating mechanism of VDR provides valuable insights into VDR regulation and its potential as a therapeutic target for PD.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2058-7716
2058-7716
DOI:10.1038/s41420-024-01912-9