High b-value diffusion-weighted fMRI in a rat forepaw electrostimulation model at 7 T

Spin-echo diffusion-weighted functional MRI (DW-fMRI) was performed on a rat forepaw electrostimulation model at 7 T. This small animal model used electric (rather than visual) stimulation and allowed DW-fMRI experiments to be performed over a broader range of acquisition parameters than previous wo...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 57; no. 1; pp. 140 - 148
Main Authors Autio, Joonas A A, Kershaw, Jeff, Shibata, Sayaka, Obata, Takayuki, Kanno, Iwao, Aoki, Ichio
Format Journal Article
LanguageEnglish
Published United States Elsevier Limited 01.07.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Spin-echo diffusion-weighted functional MRI (DW-fMRI) was performed on a rat forepaw electrostimulation model at 7 T. This small animal model used electric (rather than visual) stimulation and allowed DW-fMRI experiments to be performed over a broader range of acquisition parameters than previous work on humans and cats. Resting state experiments with injections of ultra-small superparamagnetic iron oxide (USPIO) were also used to investigate the effects of gradient coupling on the signal change. The experiments were performed over five b-values (0, 200, 800, 1400 and 2000s/mm(2)) and three echo-times (30, 60 and 90 ms). Alterations to the stimulation-induced response with respect to TE and b-value were evaluated in two intervals: the positive stimulus-correlated response (5-20s after stimulus onset) and the post-stimulus undershoot (27-40s). There was no strong dependence of the signal change on b-value for any of the intervals or TEs. Similarly, changes to the apparent transverse relaxation rate showed no clear dependence on b-value. In contrast to previous DW-fMRI studies, the simplest explanation for the observed data is a single-compartment signal model with the functional signal changes probably corresponding to extravascular SE-BOLD. Experiments with USPIO suggested that at 7 T and within the range of parameters used, the influence of gradient coupling may be sufficient to explain minor DW-fMRI signal changes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2011.04.006