Visual cohort comparison for spatial single-cell omics-data

Spatially-resolved omics-data enable researchers to precisely distinguish cell types in tissue and explore their spatial interactions, enabling deep understanding of tissue functionality. To understand what causes or deteriorates a disease and identify related biomarkers, clinical researchers regula...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on visualization and computer graphics Vol. 27; no. 2; pp. 733 - 743
Main Authors Somarakis, Antonios, Ijsselsteijn, Marieke E., Luk, Sietse J., Kenkhuis, Boyd, de Miranda, Noel F.C.C., Lelieveldt, Boudewijn P.F., Hollt, Thomas
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Spatially-resolved omics-data enable researchers to precisely distinguish cell types in tissue and explore their spatial interactions, enabling deep understanding of tissue functionality. To understand what causes or deteriorates a disease and identify related biomarkers, clinical researchers regularly perform large-scale cohort studies, requiring the comparison of such data at cellular level. In such studies, with little a-priori knowledge of what to expect in the data, explorative data analysis is a necessity. Here, we present an interactive visual analysis workflow for the comparison of cohorts of spatially-resolved omics-data. Our workflow allows the comparative analysis of two cohorts based on multiple levels-of-detail, from simple abundance of contained cell types over complex co-localization patterns to individual comparison of complete tissue images. As a result, the workflow enables the identification of cohort-differentiating features, as well as outlier samples at any stage of the workflow. During the development of the workflow, we continuously consulted with domain experts. To show the effectiveness of the workflow, we conducted multiple case studies with domain experts from different application areas and with different data modalities.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1077-2626
1941-0506
1941-0506
DOI:10.1109/TVCG.2020.3030336