Voice Biomarkers of Recovery From Acute Respiratory Illness

Voice analysis is an emerging technology which has the potential to provide low-cost, at-home monitoring of symptoms associated with a variety of health conditions. While voice has received significant attention for monitoring neurological disease, few studies have focused on voice changes related t...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 26; no. 6; pp. 2787 - 2795
Main Authors Tracey, Brian, Patel, Shyamal, Zhang, Yao, Chappie, Kara, Volfson, Dmitri, Parisi, Federico, Adans-Dester, Catherine, Bertacchi, Francesco, Bonato, Paolo, Wacnik, Paul
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Voice analysis is an emerging technology which has the potential to provide low-cost, at-home monitoring of symptoms associated with a variety of health conditions. While voice has received significant attention for monitoring neurological disease, few studies have focused on voice changes related to flu-like symptoms. Herein, we investigate the relationship between changes in acoustic features of voice and self-reported symptoms during recovery from a flu-like illness in a cohort of 29 subjects. Acoustic features were automatically extracted from "sick" and "well" visit data collected in the laboratory setting, and feature down-selection was used to identify those that change significantly between visits. The selected acoustic features were extracted from at-home data and used to construct a combined distance metric that correlated with self-reported symptoms (0.63 rank correlation). Changes in self-reported symptoms corresponding to 10% of the ordinal scale used in the study were detected with an area under the curve of 0.72. The results show that acoustic features derived from voice recordings may provide an objective measure for diagnosing and monitoring symptoms of respiratory illnesses.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2021.3137050