Substituted 2,5-diazabicyclo[4.1.0]heptanes and their application as general piperazine surrogates: synthesis and biological activity of a Ciprofloxacin analogue
Piperazines and modified piperazines, such as homopiperazines and 2-methylpiperazines, are found in a wide range of pharmaceutical substances and biologically active molecules. In this study 2,5-diazabicyclo[4.1.0]heptanes, in which a cyclopropane ring is fused onto a piperazine ring, are described...
Saved in:
Published in | Tetrahedron Vol. 66; no. 18; pp. 3370 - 3377 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
OXFORD
Elsevier Ltd
01.05.2010
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Piperazines and modified piperazines, such as homopiperazines and 2-methylpiperazines, are found in a wide range of pharmaceutical substances and biologically active molecules. In this study 2,5-diazabicyclo[4.1.0]heptanes, in which a cyclopropane ring is fused onto a piperazine ring, are described as modified piperazine analogues. Differentially
N,
N′-disubstituted and
N-monosubstituted compounds can be readily prepared from 2-ketopiperazine in a few steps, using a Simmons–Smith reaction of 1,2,3,4-tetrahydropyrazines with diethylzinc and diiodomethane for the key cyclopropane ring formation. An analogue of the fluoroquinolone antibacterial Ciprofloxacin was synthesized using a palladium-catalyzed Buchwald–Hartwig cross-coupling to attach the diazabicyclo[4.1.0]heptane core to the 7-position of the fluoroquinolone core. The resultant analogue was demonstrated to have similar antibacterial activity to the parent drug Ciprofloxacin. X-ray crystallographic analysis of this analogue reveals a distorted piperazine ring in the diazabicyclo[4.1.0]heptane core. The p
K
a of the conjugate acid of
N-Cbz-monoprotected 2,5-diazabicyclo[4.1.0]heptane was determined to be 6.74±0.05, which is 1.3 p
K
a units lower than the corresponding
N-Cbz-monoprotected piperazine compound. The lower basicity of diazabicyclo[4.1.0]heptanes is due to the electron-withdrawing character of the adjacent cyclopropane rings. The modified physicochemical and structural properties of diazabicyclo[4.1.0]heptanes relative to piperazines are expected to lead to interesting changes in the pharmacokinetic and biological activity profile of these molecules.
[Display omitted] |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0040-4020 1464-5416 |
DOI: | 10.1016/j.tet.2010.02.046 |