Multimodal Integrated Sensor Platform for Rapid Biomarker Detection
Precision metabolomics and quantification for cost-effective rapid diagnosis of disease are the key goals in personalized medicine and point-of-care testing. At present, patients are subjected to multiple test procedures requiring large laboratory equipment. Microelectronics has already made modern...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 67; no. 2; pp. 614 - 623 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Precision metabolomics and quantification for cost-effective rapid diagnosis of disease are the key goals in personalized medicine and point-of-care testing. At present, patients are subjected to multiple test procedures requiring large laboratory equipment. Microelectronics has already made modern computing and communications possible by integration of complex functions within a single chip. As More than Moore technology increases in importance, integrated circuits for densely patterned sensor chips have grown in significance. Here, we present a versatile single complementary metal-oxide-semiconductor chip forming a platform to address personalized needs through on-chip multimodal optical and electrochemical detection that will reduce the number of tests that patients must take. The chip integrates interleaved sensing subsystems for quadruple-mode colorimetric, chemiluminescent, surface plasmon resonance, and hydrogen ion measurements. These subsystems include a photodiode array and a single photon avalanche diode array with some elements functionalized to introduce a surface plasmon resonance mode. The chip also includes an array of ion sensitive field-effect transistors. The sensor arrays are distributed uniformly over an active area on the chip surface in a scalable and modular design. Bio-functionalization of the physical sensors yields a highly selective simultaneous multiple-assay platform in a disposable format. We demonstrate its versatile capabilities through quantified bio-assays performed on-chip for glucose, cholesterol, urea, and urate, each within their naturally occurring physiological range. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0018-9294 1558-2531 |
DOI: | 10.1109/TBME.2019.2919192 |