LDA Ensembles for Interactive Exploration and Categorization of Behaviors

We define behavior as a set of actions performed by some actor during a period of time. We consider the problem of analyzing a large collection of behaviors by multiple actors, more specifically, identifying typical behaviors and spotting anomalous behaviors. We propose an approach leveraging topic...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on visualization and computer graphics Vol. 26; no. 9; pp. 2775 - 2792
Main Authors Chen, Siming, Andrienko, Natalia, Andrienko, Gennady, Adilova, Linara, Barlet, Jeremie, Kindermann, Jorg, Nguyen, Phong H., Thonnard, Olivier, Turkay, Cagatay
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We define behavior as a set of actions performed by some actor during a period of time. We consider the problem of analyzing a large collection of behaviors by multiple actors, more specifically, identifying typical behaviors and spotting anomalous behaviors. We propose an approach leveraging topic modeling techniques - LDA (Latent Dirichlet Allocation) Ensembles - to represent categories of typical behaviors by topics that are obtained through topic modeling a behavior collection. When such methods are applied to text in natural languages, the quality of the extracted topics are usually judged based on the semantic relatedness of the terms pertinent to the topics. This criterion, however, is not necessarily applicable to topics extracted from non-textual data, such as action sets, since relationships between actions may not be obvious. We have developed a suite of visual and interactive techniques supporting the construction of an appropriate combination of topics based on other criteria, such as distinctiveness and coverage of the behavior set. Two case studies on analyzing operation behaviors in the security management system and visiting behaviors in an amusement park, and the expert evaluation of the first case study demonstrate the effectiveness of our approach.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1077-2626
1941-0506
DOI:10.1109/TVCG.2019.2904069