Molecular analysis of repetitive DNA elements from Entamoeba histolytica, which encode small RNAs and contain matrix/scaffold attachment recognition sequences

We have isolated two DNA elements-Eh MRS1 and Eh MRS2-from Entamoeba histolytica, which contain the eukaryotic consensus Scaffold/Matrix Attachment Region (S/MAR) bipartite recognition sequences. Both these sequences bind to high salt extractable nuclear proteins and insoluble nuclear matrix protein...

Full description

Saved in:
Bibliographic Details
Published inMolecular and biochemical parasitology Vol. 126; no. 1; pp. 35 - 42
Main Authors Banerjee, Sulagna, Lohia, Anuradha
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 2003
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We have isolated two DNA elements-Eh MRS1 and Eh MRS2-from Entamoeba histolytica, which contain the eukaryotic consensus Scaffold/Matrix Attachment Region (S/MAR) bipartite recognition sequences. Both these sequences bind to high salt extractable nuclear proteins and insoluble nuclear matrix proteins in E. histolytica HM1:IMSS, suggesting that the predicted S/MAR recognition sequences may indeed function as scaffold attachment regions in E. histolytica. Sequence analysis shows that Eh MRS1 and Eh MRS2 contain internal tandem repeats ranging from units of 8–11 bp and are themselves present as independent arrays of tandemly repeating units of approximately 1100 bp each. Eh MRS1 and Eh MRS2 are localised on different chromosomes in E. histolytica HM1:IMSS. Both Eh MRS1 and Eh MRS2 also code for small molecular weight RNAs of unknown function. Thus, two unique sequences-Eh MRS1 and Eh MRS2-demonstrate very similar properties, suggesting that they belong to a superfamily of genomic elements, which may function as scaffold or matrix attachment sites in Entamoeba.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0166-6851
1872-9428
DOI:10.1016/S0166-6851(02)00244-X