A clinical Raman spectroscopy imaging system and safety requirements for in situ intraoperative tissue characterization
Raman spectroscopy imaging is a technique that can be adapted for intraoperative tissue characterization to be used for surgical guidance. Here we present a macroscopic line scanning Raman imaging system that has been modified to ensure suitability for intraoperative use. The imaging system has a fi...
Saved in:
Published in | Analyst (London) Vol. 148; no. 9; pp. 1991 - 2001 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
02.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Raman spectroscopy imaging is a technique that can be adapted for intraoperative tissue characterization to be used for surgical guidance. Here we present a macroscopic line scanning Raman imaging system that has been modified to ensure suitability for intraoperative use. The imaging system has a field of view of 1 × 1 cm
and acquires Raman fingerprint images of 40 × 42 pixels, typically in less than 5 minutes. The system is mounted on a mobile cart, it is equiped with a passive support arm and possesses a removable and sterilizable probe muzzle. The results of a proof of concept study are presented in porcine adipose and muscle tissue. Supervised machine learning models (support vector machines and random forests) were trained and they were tested on a holdout dataset consisting of 7 Raman images (10 080 spectra) acquired in different animal tissues. This led to a detection accuracy >96% and prediction confidence maps providing a quantitative detection assessment for tissue border visualization. Further testing was accomplished on a dataset acquired with the imaging probe's contact muzzle and tailored classification models showed robust classifications capabilities with specificity, sensitivity and accuracy all surpassing 95% with a support vector machine classifier. Finally, laser safety, biosafety and sterilization of the system was assest. The safety assessment showed that the system's laser can be operated safetly according to the American National Standards Institute's standard for maximum permissible exposures for eyes and skin. It was further shown that during tissue interrogation, the temperature-history in cumulative equivalent minutes at 43 °C (CEM43 °C) never exceeded a safe threshold of 5 min. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0003-2654 1364-5528 |
DOI: | 10.1039/d2an01946a |