Temporal evolution of microstructure and its influence on micromechanical and tribological properties of Stellite-6 cladding under aging treatment

The degradation of components resulted from wear is unavoidable in service, which could be partly solved by applying surface treatment technique. Stellite-6 cobalt-based alloy is considered as a potential cladding material to improve the wear resistance of base materials owing to its excellent hardn...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science Vol. 58; no. 26; pp. 10802 - 10820
Main Authors Xiong, Jiankun, Guo, Yang, Nie, Fuheng, Mao, Guijun, Yang, Jianping, Zhou, Qinghua, Zhu, Hao, Li, Xia
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2023
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The degradation of components resulted from wear is unavoidable in service, which could be partly solved by applying surface treatment technique. Stellite-6 cobalt-based alloy is considered as a potential cladding material to improve the wear resistance of base materials owing to its excellent hardness and strength. The microstructural evolution and local mechanical properties of Co-rich matrix and Cr-rich eutectic carbide of Stellite-6 cladding with different aging times at 900 °C are investigated by optical microscopy, field emission scanning electron microscope and nanoindentation testing. The tribological characteristics of the matrix and eutectic carbide itself are systematically investigated using the single-pass nano-scratch testing. In the matrix region, the carbide precipitations occur after 5 h and coarsens after 10 h aging. The nanoindentation results indicate that the hardness of the matrix regions is significantly increased due to the presence of dispersed carbide and fine stripe-like precipitations. The nano-scratch tests depict that the wear resistance is improved with higher matrix hardness to support eutectic carbide based on aging treatment. Potential improvement on tribological performance through the aging treatment procedure is proved based on the micromechanical and wear behaviors of matrix and eutectic carbide were identified. Graphical abstract
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-023-08690-2