Electroviscous effects in a Carreau liquid flowing through a cylindrical microfluidic contraction

Electroviscous effects in steady, pressure-driven flow of a Carreau shear-thinning liquid in a cylindrical microfluidic 4:1:4 contraction–expansion at low Reynolds number are investigated numerically by solving the equations governing the flow, the electric field, and ion transport, using a finite v...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering science Vol. 65; no. 23; pp. 6259 - 6269
Main Authors Davidson, Malcolm R., Bharti, Ram P., Harvie, Dalton J.E.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.12.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Electroviscous effects in steady, pressure-driven flow of a Carreau shear-thinning liquid in a cylindrical microfluidic 4:1:4 contraction–expansion at low Reynolds number are investigated numerically by solving the equations governing the flow, the electric field, and ion transport, using a finite volume method. The channel wall is considered to have a uniform surface charge density and the liquid is assumed to be a symmetric 1:1 electrolyte solution. Predictions are presented for a range of values of the shear-thinning parameters in the Carreau model for various surface charge densities and Debye lengths. The apparent/physical viscosity ratio is shown to increase as the degree of shear-thinning increases. Thus the electroviscous effect is stronger in shear-thinning liquids than it is when the liquid is Newtonian, a result previously obtained for uniform pipe flow of power-law liquids. The trend holds true regardless of the choice of surface charge density or Debye length, although the magnitude of the trend decreases as the surface charge density and/or the Debye length is reduced. Comparison between uniform pipe flow of a Carreau liquid and the corresponding power-law liquid that approximates it at large shear rates shows that the apparent/physical viscosity ratios for the two models are almost identical. A previous prediction that a near-wall region of reduced velocity can occur for pipe flow of a shear-thinning power-law liquid when EDLs are overlapping and surface charge density is elevated is confirmed for a Carreau liquid.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0009-2509
1873-4405
DOI:10.1016/j.ces.2010.09.011