Existence of positive solutions for a system of Caputo fractional difference equations depending on parameters

We consider the existence of at least two positive solutions for a system of Caputo fractional difference equations Δ C ν j y j ( t ) = − λ j f j ( y 1 ( t + ν 1 − 1 ) , … , y n ( t + ν n − 1 ) ) , subject to boundary conditions y j ( ν j − 3 ) = Δ y j ( ν j + b ) = Δ 2 y j ( ν j − 3 ) = 0 , where 2...

Full description

Saved in:
Bibliographic Details
Published inAdvances in difference equations Vol. 2015; no. 1; pp. 1 - 14
Main Authors Kang, Shugui, Chen, Huiqin, Guo, Jianmin
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 06.05.2015
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We consider the existence of at least two positive solutions for a system of Caputo fractional difference equations Δ C ν j y j ( t ) = − λ j f j ( y 1 ( t + ν 1 − 1 ) , … , y n ( t + ν n − 1 ) ) , subject to boundary conditions y j ( ν j − 3 ) = Δ y j ( ν j + b ) = Δ 2 y j ( ν j − 3 ) = 0 , where 2 < ν j ⩽ 3 , j = 1 , … , n . We use the Krasnosel’skiĭ fixed point theorem to obtain the sufficient conditions of the existence of two positive solutions for this boundary value problem of Caputo fractional difference equations depending on parameters.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-015-0466-y