Existence of positive solutions for a system of Caputo fractional difference equations depending on parameters
We consider the existence of at least two positive solutions for a system of Caputo fractional difference equations Δ C ν j y j ( t ) = − λ j f j ( y 1 ( t + ν 1 − 1 ) , … , y n ( t + ν n − 1 ) ) , subject to boundary conditions y j ( ν j − 3 ) = Δ y j ( ν j + b ) = Δ 2 y j ( ν j − 3 ) = 0 , where 2...
Saved in:
Published in | Advances in difference equations Vol. 2015; no. 1; pp. 1 - 14 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
06.05.2015
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We consider the existence of at least two positive solutions for a system of Caputo fractional difference equations
Δ
C
ν
j
y
j
(
t
)
=
−
λ
j
f
j
(
y
1
(
t
+
ν
1
−
1
)
,
…
,
y
n
(
t
+
ν
n
−
1
)
)
, subject to boundary conditions
y
j
(
ν
j
−
3
)
=
Δ
y
j
(
ν
j
+
b
)
=
Δ
2
y
j
(
ν
j
−
3
)
=
0
, where
2
<
ν
j
⩽
3
,
j
=
1
,
…
,
n
. We use the Krasnosel’skiĭ fixed point theorem to obtain the sufficient conditions of the existence of two positive solutions for this boundary value problem of Caputo fractional difference equations depending on parameters. |
---|---|
Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1687-1847 1687-1839 1687-1847 |
DOI: | 10.1186/s13662-015-0466-y |