Bispectral analysis and model validation of texture images

Statistical approaches to texture analysis and synthesis have largely relied upon random models that characterize the 2-D process in terms of its first- and second-order statistics, and therefore cannot completely capture phase properties of random fields that are non-Gaussian and/or asymmetric. In...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 4; no. 7; pp. 996 - 1009
Main Authors Hall, T.E., Giannakis, G.B.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.07.1995
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Statistical approaches to texture analysis and synthesis have largely relied upon random models that characterize the 2-D process in terms of its first- and second-order statistics, and therefore cannot completely capture phase properties of random fields that are non-Gaussian and/or asymmetric. In this paper, higher than second-order statistics are used to derive and implement 2-D Gaussianity, linearity, and spatial reversibility tests that validate the respective modeling assumptions. The nonredundant region of the 2-D bispectrum is correctly defined and proven. A consistent parameter estimator for nonminimum phase, asymmetric noncausal, 2-D ARMA models is derived by minimizing a quadratic error polyspectrum matching criterion. Simulations on synthetic data are performed and the results of the bispectral analysis on real textures are reported.< >
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1057-7149
1941-0042
DOI:10.1109/83.392340