New developments on the geometric nonholonomic integrator

In this paper, we will discuss new developments regarding the geometric nonholonomic integrator (GNI) (Ferraro et al 2008 Nonlinearity 21 1911-28; Ferraro et al 2009 Discrete Contin. Dyn. Syst. (Suppl.) 220-9). GNI is a discretization scheme adapted to nonholonomic mechanical systems through a discr...

Full description

Saved in:
Bibliographic Details
Published inNonlinearity Vol. 28; no. 4; pp. 871 - 900
Main Authors Ferraro, Sebastián, Jiménez, Fernando, Diego, David Martín de
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.04.2015
Subjects
Online AccessGet full text
ISSN0951-7715
1361-6544
DOI10.1088/0951-7715/28/4/871

Cover

More Information
Summary:In this paper, we will discuss new developments regarding the geometric nonholonomic integrator (GNI) (Ferraro et al 2008 Nonlinearity 21 1911-28; Ferraro et al 2009 Discrete Contin. Dyn. Syst. (Suppl.) 220-9). GNI is a discretization scheme adapted to nonholonomic mechanical systems through a discrete geometric approach. This method was designed to account for some of the special geometric structures associated to a nonholonomic motion, like preservation of energy, preservation of constraints or the nonholonomic momentum equation. First, we study the GNI versions of the symplectic-Euler methods, paying special attention to their convergence behaviour. Then, we construct an extension of the GNI in the case of affine constraints. Finally, we generalize the proposed method to nonholonomic reduced systems, an important subclass of examples in nonholonomic dynamics. We illustrate the behaviour of the proposed method with the example of the inhomogeneous sphere rolling without slipping on a table.
Bibliography:NON-100152.R2
London Mathematical Society
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0951-7715
1361-6544
DOI:10.1088/0951-7715/28/4/871