On computational algorithms for real-valued continuous functions of several variables
The subject of this paper is algorithms for computing superpositions of real-valued continuous functions of several variables based on space-filling curves. The prototypes of these algorithms were based on Kolmogorov’s dimension-reducing superpositions (Kolmogorov, 1957). Interest in these grew sign...
Saved in:
Published in | Neural networks Vol. 59; pp. 16 - 22 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.11.2014
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0893-6080 1879-2782 1879-2782 |
DOI | 10.1016/j.neunet.2014.05.015 |
Cover
Loading…
Summary: | The subject of this paper is algorithms for computing superpositions of real-valued continuous functions of several variables based on space-filling curves. The prototypes of these algorithms were based on Kolmogorov’s dimension-reducing superpositions (Kolmogorov, 1957). Interest in these grew significantly with the discovery of Hecht-Nielsen that a version of Kolmogorov’s formula has an interpretation as a feedforward neural network (Hecht-Nielse, 1987). These superpositions were constructed with devil’s staircase-type functions to answer a question in functional complexity, rather than become computational algorithms, and their utility as an efficient computational tool turned out to be limited by the characteristics of space-filling curves that they determined. After discussing the link between the algorithms and these curves, this paper presents two algorithms for the case of two variables: one based on space-filling curves with worked out coding, and the Hilbert curve (Hilbert, 1891). |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0893-6080 1879-2782 1879-2782 |
DOI: | 10.1016/j.neunet.2014.05.015 |