Remodeling of ECM patch into functional myocardium in an ovine model: A pilot study

Previous studies have demonstrated that surgical patches comprised of small intestinal submucosa-derived extracellular matrix (ECM) have biological remodeling potential. This pilot study investigated histological, mechanical, and bioelectrical properties of an ECM patch implanted in the ovine right-...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical materials research. Part B, Applied biomaterials Vol. 104; no. 8; pp. 1713 - 1720
Main Authors Scully, Brandi B., Fan, Christopher, Grigoryan, Bagrat, Jacot, Jeffrey G., Vick III, G. W., Kim, Jeffrey J., Fraser Jr, Charles D., Grande-Allen, K. J., Morales, David L. S.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.11.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Previous studies have demonstrated that surgical patches comprised of small intestinal submucosa-derived extracellular matrix (ECM) have biological remodeling potential. This pilot study investigated histological, mechanical, and bioelectrical properties of an ECM patch implanted in the ovine right-ventricular outflow tract (RVOT). ECM patches (2 × 2 cm ) were implanted in four Western Range sheep (wether males, 37-49 kg, age <1 year) and explanted at 5 months (n = 2) and 8 months (n = 2). In vivo analysis included epicardial echocardiography and contact electrical mapping. Optical mapping was used to map electrical activity of two hearts on a Langendorff preparation. Mechanical testing quantified stiffness. Histological stains characterized structure, neovascularization, and calcification; immunohistochemistry (IHC) assessed cell phenotype. In vivo analysis showed that ECM patch tissue was contractile by M-mode and two-dimensional echocardiographic evaluation. In vivo electrical mapping, and optical mapping confirmed that ECM conducted an organized electrical signal. Mechanical testing of native and ECM patched RVOT tissue showed an elastic modulus of the implanted patch comparable to native tissue stiffness. At 5 and 8 months, the ECM had undergone extracellular matrix remodeling and neovascularization without calcification. The ECM was populated with locally aligned muscle cells positive for sarcomeric alpha-actinin, CD45, and troponin I and T. In sheep, the ECM patch appears to have the potential of remodeling to resemble native, functional ventricular tissue as evidenced by histological, mechanical, and electrical properties. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1713-1720, 2016.
Bibliography:ArticleID:JBMB33484
ark:/67375/WNG-DQ8T01B5-J
istex:E26A073EBFE32CB5A199D2156B1A25F4725A5667
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1552-4973
1552-4981
DOI:10.1002/jbm.b.33484