Replication-coupled modulation of early replicating chromatin domains detected by anti-actin antibody

Evidence is presented for the reversible, cold‐dependent immunofluorescence detection of the epitope (hereafter referred to as epiC), recognized by a monoclonal anti‐actin antibody in diploid human fibroblast cell nuclei and mitotic chromosomes. The nuclear/chromosomal epiC was detected in a cell cy...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular biochemistry Vol. 94; no. 5; pp. 899 - 916
Main Authors Fidlerová, Helena, Mašata, Martin, Malínský, Jan, Fialová, Markéta, Cvac̆ková, Zuzana, Louz̆ecká, Alena, Koberna, Karel, Berezney, Ronald, Ras̆ka, Ivan
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.04.2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Evidence is presented for the reversible, cold‐dependent immunofluorescence detection of the epitope (hereafter referred to as epiC), recognized by a monoclonal anti‐actin antibody in diploid human fibroblast cell nuclei and mitotic chromosomes. The nuclear/chromosomal epiC was detected in a cell cycle window beginning in early S phase and extending through S phase, G2 phase, mitosis until early G1 phase of the subsequent daughter cells. A small but significant level of co‐localization was measured between the nuclear epiC and active sites of DNA replication in early S phase. The level of co‐localization was strikingly enhanced beginning approximately 1 h after the initial labeling of early S phase replicating chromatin domains. In contrast, epiC did not co‐localize with late S phase replicated chromatin either during DNA replication or at any other time in the cell cycle. We propose a replication‐coupled modulation of early S phase replicated chromatin domains that is detected by the chromatin epiC positivity, persists on the chromatin domains from early S until early G1 of the next cell generation, and may be involved in the regulation and/or coordination of replicational and transcriptional processes during the cell cycle. Further studies will be required to resolve the possible role of nuclear actin in this modulation process. J. Cell. Biochem. 94: 899–916, 2005. © 2005 Wiley‐Liss, Inc.
AbstractList Evidence is presented for the reversible, cold-dependent immunofluorescence detection of the epitope (hereafter referred to as epiC), recognized by a monoclonal anti-actin antibody in diploid human fibroblast cell nuclei and mitotic chromosomes. The nuclear/chromosomal epiC was detected in a cell cycle window beginning in early S phase and extending through S phase, G sub(2) phase, mitosis until early G sub(1) phase of the subsequent daughter cells. A small but significant level of co-localization was measured between the nuclear epiC and active sites of DNA replication in early S phase. The level of co-localization was strikingly enhanced beginning approximately 1 h after the initial labeling of early S phase replicating chromatin domains. In contrast, epiC did not co- localize with late S phase replicated chromatin either during DNA replication or at any other time in the cell cycle. We propose a replication-coupled modulation of early S phase replicated chromatin domains that is detected by the chromatin epiC positivity, persists on the chromatin domains from early S until early G sub(1) of the next cell generation, and may be involved in the regulation and/or coordination of replicational and transcriptional processes during the cell cycle. Further studies will be required to resolve the possible role of nuclear actin in this modulation process. J. Cell. Biochem. 94: 899-916, 2005.
Evidence is presented for the reversible, cold‐dependent immunofluorescence detection of the epitope (hereafter referred to as epiC), recognized by a monoclonal anti‐actin antibody in diploid human fibroblast cell nuclei and mitotic chromosomes. The nuclear/chromosomal epiC was detected in a cell cycle window beginning in early S phase and extending through S phase, G2 phase, mitosis until early G1 phase of the subsequent daughter cells. A small but significant level of co‐localization was measured between the nuclear epiC and active sites of DNA replication in early S phase. The level of co‐localization was strikingly enhanced beginning approximately 1 h after the initial labeling of early S phase replicating chromatin domains. In contrast, epiC did not co‐localize with late S phase replicated chromatin either during DNA replication or at any other time in the cell cycle. We propose a replication‐coupled modulation of early S phase replicated chromatin domains that is detected by the chromatin epiC positivity, persists on the chromatin domains from early S until early G1 of the next cell generation, and may be involved in the regulation and/or coordination of replicational and transcriptional processes during the cell cycle. Further studies will be required to resolve the possible role of nuclear actin in this modulation process. J. Cell. Biochem. 94: 899–916, 2005. © 2005 Wiley‐Liss, Inc.
Evidence is presented for the reversible, cold-dependent immunofluorescence detection of the epitope (hereafter referred to as epiC), recognized by a monoclonal anti-actin antibody in diploid human fibroblast cell nuclei and mitotic chromosomes. The nuclear/chromosomal epiC was detected in a cell cycle window beginning in early S phase and extending through S phase, G(2) phase, mitosis until early G(1) phase of the subsequent daughter cells. A small but significant level of co-localization was measured between the nuclear epiC and active sites of DNA replication in early S phase. The level of co-localization was strikingly enhanced beginning approximately 1 h after the initial labeling of early S phase replicating chromatin domains. In contrast, epiC did not co-localize with late S phase replicated chromatin either during DNA replication or at any other time in the cell cycle. We propose a replication-coupled modulation of early S phase replicated chromatin domains that is detected by the chromatin epiC positivity, persists on the chromatin domains from early S until early G(1) of the next cell generation, and may be involved in the regulation and/or coordination of replicational and transcriptional processes during the cell cycle. Further studies will be required to resolve the possible role of nuclear actin in this modulation process.
Abstract Evidence is presented for the reversible, cold‐dependent immunofluorescence detection of the epitope (hereafter referred to as epiC ), recognized by a monoclonal anti‐actin antibody in diploid human fibroblast cell nuclei and mitotic chromosomes. The nuclear/chromosomal epiC was detected in a cell cycle window beginning in early S phase and extending through S phase, G 2 phase, mitosis until early G 1 phase of the subsequent daughter cells. A small but significant level of co‐localization was measured between the nuclear epiC and active sites of DNA replication in early S phase. The level of co‐localization was strikingly enhanced beginning approximately 1 h after the initial labeling of early S phase replicating chromatin domains. In contrast, epiC did not co‐localize with late S phase replicated chromatin either during DNA replication or at any other time in the cell cycle. We propose a replication‐coupled modulation of early S phase replicated chromatin domains that is detected by the chromatin epiC positivity, persists on the chromatin domains from early S until early G 1 of the next cell generation, and may be involved in the regulation and/or coordination of replicational and transcriptional processes during the cell cycle. Further studies will be required to resolve the possible role of nuclear actin in this modulation process. J. Cell. Biochem. 94: 899–916, 2005. © 2005 Wiley‐Liss, Inc.
Author Fialová, Markéta
Fidlerová, Helena
Berezney, Ronald
Malínský, Jan
Louz̆ecká, Alena
Cvac̆ková, Zuzana
Mašata, Martin
Koberna, Karel
Ras̆ka, Ivan
Author_xml – sequence: 1
  givenname: Helena
  surname: Fidlerová
  fullname: Fidlerová, Helena
  email: hfidl@lf1.cuni.cz
  organization: Department of Cell Biology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic and Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University in Prague, Albertov 4, 128 00 Prague 2, Czech Republic
– sequence: 2
  givenname: Martin
  surname: Mašata
  fullname: Mašata, Martin
  organization: Department of Cell Biology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic and Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University in Prague, Albertov 4, 128 00 Prague 2, Czech Republic
– sequence: 3
  givenname: Jan
  surname: Malínský
  fullname: Malínský, Jan
  organization: Department of Cell Biology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic and Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University in Prague, Albertov 4, 128 00 Prague 2, Czech Republic
– sequence: 4
  givenname: Markéta
  surname: Fialová
  fullname: Fialová, Markéta
  organization: Department of Cell Biology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic and Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University in Prague, Albertov 4, 128 00 Prague 2, Czech Republic
– sequence: 5
  givenname: Zuzana
  surname: Cvac̆ková
  fullname: Cvac̆ková, Zuzana
  organization: Department of Cell Biology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic and Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University in Prague, Albertov 4, 128 00 Prague 2, Czech Republic
– sequence: 6
  givenname: Alena
  surname: Louz̆ecká
  fullname: Louz̆ecká, Alena
  organization: Department of Cell Biology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic and Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University in Prague, Albertov 4, 128 00 Prague 2, Czech Republic
– sequence: 7
  givenname: Karel
  surname: Koberna
  fullname: Koberna, Karel
  organization: Department of Cell Biology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic and Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University in Prague, Albertov 4, 128 00 Prague 2, Czech Republic
– sequence: 8
  givenname: Ronald
  surname: Berezney
  fullname: Berezney, Ronald
  organization: Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
– sequence: 9
  givenname: Ivan
  surname: Ras̆ka
  fullname: Ras̆ka, Ivan
  organization: Department of Cell Biology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic and Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University in Prague, Albertov 4, 128 00 Prague 2, Czech Republic
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15714458$$D View this record in MEDLINE/PubMed
BookMark eNqFkEtP3TAQhS0E4l4eC_5AlRVSFwE_Y3tZrlpohUAFqi4tx5m0gSS-2IlK_n19H5RVxeqMZr5zpDkHaLf3PSB0QvAZwZieP7ryjGIm-Q6aE6xlzgvOd9EcS4ZzygidoYMYHzHGWjO6j2ZESMK5UHMEd7BsG2eHxve58-OyhSrrfDW261Xm6wxsaKcsvHL9r8z9Dr5bjVmVtOljVsEAbkjWcspsPzS5davzaix9NR2hvdq2EY63eoh-fPn8sLjKr28vvy4-XeeOacrzApSqBFhrCSWllg4gSW1rTbXipAKNAayi6S4ZCMWd4CDqgpSKJ0SyQ3S6yV0G_zxCHEzXRAdta3vwYzSFFIRjRd4FKZZUp7oS-HEDuuBjDFCbZWg6GyZDsFmVb1L5Zl1-Yj9sQ8eyg-qN3LadgPMN8KdpYfp_kvm2uHiNzDeOJg7w8s9hw1P6hUlhft5cGkrVfSG-a0PZX6C7oBw
CitedBy_id crossref_primary_10_4161_epi_6_5_15082
crossref_primary_10_1016_j_jsb_2009_03_015
crossref_primary_10_1074_jbc_M413444200
Cites_doi 10.3109/10409239009090612
10.1126/science.1079731
10.1016/S0955-0674(02)00335-6
10.1083/jcb.149.2.271
10.1111/j.1462-5822.2007.00901.x
10.1016/S1047-8477(02)00528-2
10.1242/jcs.92.3.519
10.1016/S0959-437X(00)00175-1
10.1242/jcs.109.4.787
10.1242/jcs.107.6.1449
10.1038/nature01150
10.1016/S0167-4838(01)00325-9
10.1016/S0960-9822(00)00312-2
10.1126/science.6719109
10.1073/pnas.76.9.4350
10.1016/S0955-0674(03)00043-7
10.1242/jcs.00087
10.1016/S0167-4838(01)00354-5
10.1007/s004390050686
10.1110/ps.03172703
10.1007/s004120050384
10.1016/S0065-2571(01)00041-3
10.1146/annurev.biochem.71.110601.135507
10.1002/1521-1878(200009)22:9<836::AID-BIES9>3.0.CO;2-X
10.1016/j.yexcr.2004.02.010
10.1242/jcs.107.11.3097
10.1186/1471-2121-2-10
10.1038/sj.onc.1205112
10.1016/0014-5793(89)80544-7
10.1002/(SICI)1097-4644(1998)72:30/31 <238::AID-JCB29>3.0.CO;2-F
10.1083/jcb.105.4.1549
10.1083/jcb.152.2.F11
10.1083/jcb.200211127
10.1242/jcs.112.6.797
10.1242/jcs.115.1.51
10.1126/science.281.5382.1502
10.1083/jcb.146.6.1211
10.1083/jcb.108.1.1
10.1016/S0960-9822(02)00976-4
10.1242/jcs.114.15.2711
10.1007/s004120050399
10.1002/1097-4644(20010401)81:1<56::AID-JCB1023>3.0.CO;2-#
10.1016/S1097-2765(00)80227-0
10.1021/bi010767j
10.1016/S0021-9258(18)66672-4
10.1016/S1097-2765(02)00729-3
10.1242/jcs.105.2.347
10.1002/bies.10305
10.1016/S0021-9258(19)70681-4
10.1016/S0962-8924(99)01713-4
10.1074/jbc.M009424200
10.1083/jcb.200104043
10.1073/pnas.032662899
10.1083/jcb.143.6.1415
10.1016/S0014-4827(02)00050-2
10.1016/0022-2836(86)90017-3
10.1016/S0955-0674(02)00324-1
10.1038/ng1005
10.1083/jcb.140.6.1285
ContentType Journal Article
Copyright Copyright © 2005 Wiley‐Liss, Inc.
(c) 2005 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2005 Wiley‐Liss, Inc.
– notice: (c) 2005 Wiley-Liss, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
FR3
P64
RC3
7X8
DOI 10.1002/jcb.20374
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts

MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1097-4644
EndPage 916
ExternalDocumentID 10_1002_jcb_20374
15714458
JCB20374
ark_67375_WNG_228S65Q9_2
Genre article
Research Support, U.S. Gov't, P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: GM 072131‐23
– fundername: Grant Agency of the Czech Academy of Sciences
  funderid: IAA5039103; AV0Z5039906
– fundername: Ministry of Education, Youth and Sports of the Czech Republic
  funderid: MSM 111100003
– fundername: Grant Agency of the Czech Republic
  funderid: 304/00/1622; 304/03/1121; 304/04/0692; 304/02/0342
– fundername: NIGMS NIH HHS
  grantid: GM 072131-23
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABHUG
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHBTC
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HHY
HHZ
HVGLF
HZ~
IH2
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
ROL
RWI
RX1
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AITYG
HGLYW
OIG
CGR
CUY
CVF
ECM
EIF
NPM
.GJ
AAYXX
ABEML
ACSCC
CITATION
EBD
EMOBN
HF~
LH6
NDZJH
PALCI
RIWAO
RJQFR
RYL
SAMSI
SV3
WSB
ZGI
ZXP
8FD
FR3
P64
RC3
7X8
ID FETCH-LOGICAL-c3924-6e88d5eaaa121b97cee1b9faf929841de90eea82aa173e584c54e5f61b8492973
IEDL.DBID DR2
ISSN 0730-2312
IngestDate Fri Aug 16 14:15:58 EDT 2024
Fri Aug 16 04:03:42 EDT 2024
Fri Aug 23 01:00:18 EDT 2024
Sat Sep 28 07:52:17 EDT 2024
Sat Aug 24 00:52:20 EDT 2024
Wed Jan 17 05:15:08 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License (c) 2005 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3924-6e88d5eaaa121b97cee1b9faf929841de90eea82aa173e584c54e5f61b8492973
Notes Ministry of Education, Youth and Sports of the Czech Republic - No. MSM 111100003
ArticleID:JCB20374
ark:/67375/WNG-228S65Q9-2
National Institutes of Health - No. GM 072131-23
Grant Agency of the Czech Republic - No. 304/00/1622; No. 304/03/1121; No. 304/04/0692; No. 304/02/0342
Grant Agency of the Czech Academy of Sciences - No. IAA5039103; No. AV0Z5039906
istex:0DE150069B5DDDE1510FF45D38BDEAC07E5D58DB
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 15714458
PQID 20729009
PQPubID 23462
PageCount 18
ParticipantIDs proquest_miscellaneous_67514081
proquest_miscellaneous_20729009
crossref_primary_10_1002_jcb_20374
pubmed_primary_15714458
wiley_primary_10_1002_jcb_20374_JCB20374
istex_primary_ark_67375_WNG_228S65Q9_2
PublicationCentury 2000
PublicationDate 1 April 2005
PublicationDateYYYYMMDD 2005-04-01
PublicationDate_xml – month: 04
  year: 2005
  text: 1 April 2005
  day: 01
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Journal of cellular biochemistry
PublicationTitleAlternate J. Cell. Biochem
PublicationYear 2005
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Zhang J, Xu F, Hashimshony T, Keshet I, Cedar H. 2002. Establishment of transcriptional competence in early and late S phase. Nature 420: 198-202.
Kunugi S, Tanaka N. 2002. Cold denaturation of proteins under high pressure. Biochim Biophys Acta 1595: 329-344.
Wei X, Samarabandu J, Devdhar RS, Siegel AJ, Acharya R, Berezney R. 1998. Segregation of transcription and replication sites into higher order domains. Science 281: 1502-1506.
Bridger JM, Boyle IR, Bickmore WA. 2000. Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts. Curr Biol 10: 149-152.
Vermaak D, Ahmad K, Henikoff S. 2003. Maintenance of chromatin states: An open-and-shut case. Curr Opin Cell Biol 15: 266-274.
Rando OJ, Zhao K, Crabtree GR. 2000. Searching for a function for nuclear actin. Trends Cell Biol 10: 92-97.
Zink D, Cremer T, Saffrich R, Fischer R, Trendelenburg MF, Ansorge W, Stelzer EH. 1998. Structure and dynamics of human interphase chromosome territories in vivo. Hum Genet 102: 241-251.
Sadoni N, Langer S, Fauth C, Bernardi G, Cremer T, Turner BM, Zink D. 1999. Nuclear organization of mammalian genomes: Polar chromosome territories build up functionally distinct higher order compartments. J Cell Biol 146: 1211-1226.
Pederson T, Aebi U. 2002. Actin in the nucleus: What form and what for? J Struct Biol 140: 3-9.
Leonhardt H, Rahn H-P, Weinzierl P, Sporbert A, Cremer T, Zink D, Cardoso MC. 2000. Dynamics of DNA replication factories in living cells. J Cell Biol 149: 271-280.
Dráber P, Dráberová E, Linhartová I, Viklický V. 1989. Differences in the exposure of C- and N-terminal tubulin domains in cytoplasmic microtubules detected with domain-specific monoclonal antibodies. J Cell Sci 92: 519-528.
Nagy P, Arndt-Jovin DJ, Jovin TM. 2003. Small interfering RNAs suppress the expression of endogenous and GFP-fused epidermal growth factor receptor (erbB1) and induce apoptosis in erbB1-overexpressing cells. Exp Cell Res 285: 39-49.
Bravo R, Macdonald-Bravo H. 1987. Existence of two populations of cyclin/proliferating cell nuclear antigen during the cell cycle: Association with DNA replication sites. J Cell Biol 105: 1549-1554.
Cavalli G. 2002. Chromatin as a eukaryotic template of genetic information. Curr Opin Cell Biol 14: 269-278.
Berezney R, Dubey DD, Huberman JA. 2000. Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci. Chromosoma 108: 471-484.
Koberna K, Staněk D, Malínský J, Eltsov M, Pliss A, Čtrnáctá V, Cermanová S, Raška I. 1999. Nuclear organization studied with the help of a hypotonic shift: Its use permits hydrophilic molecules to enter into living cells. Chromosoma 108: 325-335.
Goldman MA, Holmquist GP, Gray MC, Caston LA, Nag A. 1984. Replication timing of genes and middle repetitive sequences. Science 224: 686-692.
Johnson LM, Cao X, Jacobsen SE. 2002. Interplay between two epigenetic marks: DNA methylation and histone H3 lysine 9 methylation. Curr Biol 12: 1360-1367.
Chen D, Xu W, He P, Medrano EE, Whiteheart SW. 2001. Gaf-1, a gamma-SNAP-binding protein associated with the mitochondria. J Biol Chem 276: 13127-13135.
Batchelor CL, Woodward AM, Crouch DH. 2004. Nuclear ERM (ezrin, radixin, moesin) proteins: Regulation by cell density and nuclear import. Exp Cell Res 296: 208-222.
Berezney R. 2002. Regulating the mammalian genome: The role of nuclear architecture. Adv Enzyme Regul 42: 39-52.
Nakamura F. 2001. Biochemical, electron microscopic and immunohistological observations of cationic detergent-extracted cells: Detection and improved preservation of microextensions and ultrmicroextensions. BMC Cell Biology 2: 10.
Ridgway P, Almouzni G. 2001. Chromatin assembly and organization. J Cell Sci 114: 2711-2712.
Griko YV, Venyaminov SY, Privalov PL. 1989. Heat and cold denaturation of phosphoglycerate kinase (interaction of domains). FEBS Lett 244: 276-278.
Turner B. 2000. Histone acetylation and an epigenetic code. Bioessays 22: 836-845.
James LC, Roversi P, Tawfik DS. 2003. Antibody multispecificity mediated by conformational diversity. Science 299: 1362-1367.
Dimitrova DS, Berezney R. 2002. The spatio-temporal organization of DNA replication sites is identical in primary, immortalized and transformed mammalian cells. J Cell Sci 115: 4037-4051.
Rando OJ, Zhao K, Janmey P, Crabtree GR. 2002. Phosphatidylinositol-dependent actin filament binding by the SWI/SNF-like BAF chromatin remodeling complex. Proc Natl Acad Sci USA 99: 2824-2829.
Somanathan S, Suchyna TM, Siegel AJ, Berezney R. 2001. Targeting of PCNA to sites of DNA replication in the mammalian cell nucleus. J Cell Biochem 81: 56-67.
James LC, Tawfik DS. 2003. The specificity of cross-reactivity: Promiscuous antibody binding involves specific hydrogen bonds rather than nonspecific hydrophobic stickiness. Protein Sci 12: 2183-2193.
Okorokov AL, Rubbi CP, Metcalfe S, Milner J. 2002. The interaction of p53 with the nuclear matrix is mediated by F-actin and modulated by DNA damage. Oncogene 21: 356-367.
Schübeler D, Scalzo D, Kooperberg C, van Steensel B, Delrow J, Groudine M. 2002. Genome-wide DNA replication profile for Drosophila melanogaster: A link between transcription and replication timing. Nat Genet 32: 438-442.
Jackson DA, Pombo A. 1998. Replicon clusters are stable units of chromosome structure: Evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J Cell Biol 140: 1285-1295.
Gonsior S, Platz S, Buchmeier S, Scheer U, Jockusch B, Hinssen H. 1999. Conformational difference between nuclear and cytoplasmic actin as detected by a monoclonal antibody. J Cell Sci 112: 797-809.
Privalov PL, Griko Y, Venyaminov S, Kutyshenko VP. 1986. Cold denaturation of myoglobin. J Mol Biol 190: 487-498.
Sporbert A, Gahl A, Ankerhold R, Leonhardt H, Cardoso MC. 2002. DNA polymerase clamp shows little turnover at established replication sites but sequential de novo assembly at adjacent origin clusters. Mol Cell 10: 1355-1365.
Nakayasu H, Berezney R. 1989. Mapping replicational sites in the eucaryotic cell nucleus. J Cell Biol 108: 1-11.
Dimitrova DS, Gilbert DM. 1999. The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol Cell 4: 983-993.
Lachner M, Jenuwein T. 2002. The many faces of histone lysine methylation. Curr Opin Cell Biol 14: 286-298.
Gilbert DM. 2001. Nuclear position leaves its mark on replication timing. J Cell Biol 152: 11F-16F.
McNairn A, Gilbert D. 2003. Epigenomic replication: Linking epigenetics to DNA replication. Bioessays 25: 647-656.
Berezney R, Wei X. 1998. The new paradigm: Integrating genomic function and nuclear architecture. J Cell Biochem Suppl 31: 238-242.
Ma H, Samarabandu J, Devdhar RS, Acharya R, Cheng P-C, Meng C, Berezney R. 1998. Spatial and temporal dynamics of DNA replication sites in mammalian cells. J Cell Biol 143: 1415-1425.
van Steensel B, van Binnendijk E, Hornsby C, van der Voort H, Krozowski Z, de Kloet E, van Driel R. 1996. Partial colocalization of glucocorticoid and mineralocorticoid receptors in discrete compartments in nuclei of rat hippocampus neurons. J Cell Sci 109: 787-792.
Li F, Chen J, Izumi M, Butler MC, Keezer SM, Gilbert DM. 2001. The replication timing program of the Chinese hamster {beta}-globin locus is established coincident with its repositioning near peripheral heterochromatin in early G1 phase. J Cell Biol 154: 283-292.
Towbin H, Staehelin T, Gordon J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc Natl Acad Sci USA 76: 4350-4354.
Sparvoli E, Levi M, Rossi E. 1994. Replicon clusters may form structurally stable complexes of chromatin and chromosomes. J Cell Sci 107(Pt 11): 3097-3103.
Muller C, Leutz A. 2001. Chromatin remodeling in development and differentiation. Curr Opin Genet Dev 11: 167-174.
Dimitrova DS, Prokhorova TA, Blow JJ, Todorov IT, Gilbert DM. 2002. Mammalian nuclei become licensed for DNA replication during late telophase. J Cell Sci 115: 51-59.
Jourdan M, Searle M. 2001. Insights into the stability of native and partially folded states of ubiquitin: Effects of cosolvents and denaturans on the thermodynamics of protein folding. Biochemistry 40: 10317-10325.
Sauman I, Berry SJ. 1994. An actin infrastructure is associated with eukaryotic chromosomes: Structural and functional significance. Eur J Cell Biol 64: 348-356.
Bianchi V, Pontis E, Reichard P. 1986. Changes of deoxyribonucleoside triphosphate pools induced by hydroxyurea and their relation to DNA synthesis. J Biol Chem 261: 16037-16042.
Hitchcock S. 1980. Actin deoxyribonuclease I interaction. Depolymerization and nucleotide exchange. J Biol Chem 255: 5668-5673.
Erez T, Gdalevsky GY, Hariharan C, Pines D, Pines E, Phillips RS, Cohen-Luria R, Parola AH. 2002. Cold-induced enzyme inactivation: How does cooling lead to pyridoxal phosphate-aldimine bond cleavage in tryptophanase? Biochim Biophys Acta 1594: 335-340.
Privalov PL. 1990. Cold denaturation of proteins. Crit Rev Biochem Mol Biol 25: 281-305.
Wansink DG, Manders EE, van der Kraan I, Aten JA, van Driel R, de Jong L. 1994. RNA polymerase II transcription is concentrated outside replication domains throughout S-phase. J Cell Sci 107(Pt 6): 1449-1456.
Li F, Chen J, Solessio E, Gilbert DM. 2003. Spatial distribution and specification of mammalian replication origins during G1 phase. J Cell Biol 161: 257-266.
Sahlas D, Milankov K, Park P, De Boni U. 1993. Distribution of snRNPs, splicing factor SC-35 and actin in interphase nuclei: Immunocytochemical evidence for differential distribution during changes in functional states. J Cell Sci 105: 347-357.
Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
Olave IA, Reck-Peterson SL, Crabtree GR. 2002. Nuclear actin and actin-related proteins in chromatin remodeling. Annu Rev Biochem 71: 755-781.
Holmquist GP. 1987. Role of replication time in the control of tissue-specific gene expression. Am
2002; 14
1998; 281
1996; 109
1987; 105
2002; 12
2002; 10
2002; 99
2002; 115
2003; 15
1979; 76
2001; 40
1980; 255
2003; 12
1994; 64
2002; 1594
2002; 1595
2004; 296
1987; 40
1989; 108
2002; 42
2002; 140
2000; 10
1986; 261
2002; 420
1986; 190
2003; 161
2001; 11
1994; 107
2003; 285
1984; 224
2000; 22
2002; 32
1999; 4
1999; 146
1993; 105
2003; 299
1970; 227
1999; 108
2001; 276
2001; 154
2001; 81
2001; 152
1990; 25
1989; 244
2000; 149
1989; 92
2000; 108
2002; 21
2003; 25
2001; 2
2002; 71
1999; 112
1998; 143
1998; 102
1998; 31
1998; 140
2001; 114
e_1_2_6_51_1
Sparvoli E (e_1_2_6_53_1) 1994; 107
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
Hitchcock S (e_1_2_6_20_1) 1980; 255
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_43_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
Sauman I (e_1_2_6_50_1) 1994; 64
e_1_2_6_5_1
e_1_2_6_7_1
Wansink DG (e_1_2_6_59_1) 1994; 107
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_40_1
e_1_2_6_61_1
Dráber P (e_1_2_6_14_1) 1989; 92
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
Holmquist GP (e_1_2_6_21_1) 1987; 40
References_xml – volume: 296
  start-page: 208
  year: 2004
  end-page: 222
  article-title: Nuclear ERM (ezrin, radixin, moesin) proteins: Regulation by cell density and nuclear import
  publication-title: Exp Cell Res
– volume: 140
  start-page: 1285
  year: 1998
  end-page: 1295
  article-title: Replicon clusters are stable units of chromosome structure: Evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells
  publication-title: J Cell Biol
– volume: 140
  start-page: 3
  year: 2002
  end-page: 9
  article-title: Actin in the nucleus: What form and what for?
  publication-title: J Struct Biol
– volume: 32
  start-page: 438
  year: 2002
  end-page: 442
  article-title: Genome‐wide DNA replication profile for : A link between transcription and replication timing
  publication-title: Nat Genet
– volume: 99
  start-page: 2824
  year: 2002
  end-page: 2829
  article-title: Phosphatidylinositol‐dependent actin filament binding by the SWI/SNF‐like BAF chromatin remodeling complex
  publication-title: Proc Natl Acad Sci USA
– volume: 112
  start-page: 797
  year: 1999
  end-page: 809
  article-title: Conformational difference between nuclear and cytoplasmic actin as detected by a monoclonal antibody
  publication-title: J Cell Sci
– volume: 143
  start-page: 1415
  year: 1998
  end-page: 1425
  article-title: Spatial and temporal dynamics of DNA replication sites in mammalian cells
  publication-title: J Cell Biol
– volume: 14
  start-page: 269
  year: 2002
  end-page: 278
  article-title: Chromatin as a eukaryotic template of genetic information
  publication-title: Curr Opin Cell Biol
– volume: 25
  start-page: 281
  year: 1990
  end-page: 305
  article-title: Cold denaturation of proteins
  publication-title: Crit Rev Biochem Mol Biol
– volume: 12
  start-page: 1360
  year: 2002
  end-page: 1367
  article-title: Interplay between two epigenetic marks: DNA methylation and histone H3 lysine 9 methylation
  publication-title: Curr Biol
– volume: 152
  start-page: 11F
  year: 2001
  end-page: 16F
  article-title: Nuclear position leaves its mark on replication timing
  publication-title: J Cell Biol
– volume: 15
  start-page: 266
  year: 2003
  end-page: 274
  article-title: Maintenance of chromatin states: An open‐and‐shut case
  publication-title: Curr Opin Cell Biol
– volume: 10
  start-page: 1355
  year: 2002
  end-page: 1365
  article-title: DNA polymerase clamp shows little turnover at established replication sites but sequential de novo assembly at adjacent origin clusters
  publication-title: Mol Cell
– volume: 4
  start-page: 983
  year: 1999
  end-page: 993
  article-title: The spatial position and replication timing of chromosomal domains are both established in early G1 phase
  publication-title: Mol Cell
– volume: 261
  start-page: 16037
  year: 1986
  end-page: 16042
  article-title: Changes of deoxyribonucleoside triphosphate pools induced by hydroxyurea and their relation to DNA synthesis
  publication-title: J Biol Chem
– volume: 161
  start-page: 257
  year: 2003
  end-page: 266
  article-title: Spatial distribution and specification of mammalian replication origins during G1 phase
  publication-title: J Cell Biol
– volume: 10
  start-page: 149
  year: 2000
  end-page: 152
  article-title: Re‐modelling of nuclear architecture in quiescent and senescent human fibroblasts
  publication-title: Curr Biol
– volume: 224
  start-page: 686
  year: 1984
  end-page: 692
  article-title: Replication timing of genes and middle repetitive sequences
  publication-title: Science
– volume: 40
  start-page: 10317
  year: 2001
  end-page: 10325
  article-title: Insights into the stability of native and partially folded states of ubiquitin: Effects of cosolvents and denaturans on the thermodynamics of protein folding
  publication-title: Biochemistry
– volume: 1595
  start-page: 329
  year: 2002
  end-page: 344
  article-title: Cold denaturation of proteins under high pressure
  publication-title: Biochim Biophys Acta
– volume: 2
  start-page: 10
  year: 2001
  article-title: Biochemical, electron microscopic and immunohistological observations of cationic detergent‐extracted cells: Detection and improved preservation of microextensions and ultrmicroextensions
  publication-title: BMC Cell Biology
– volume: 109
  start-page: 787
  year: 1996
  end-page: 792
  article-title: Partial colocalization of glucocorticoid and mineralocorticoid receptors in discrete compartments in nuclei of rat hippocampus neurons
  publication-title: J Cell Sci
– volume: 281
  start-page: 1502
  year: 1998
  end-page: 1506
  article-title: Segregation of transcription and replication sites into higher order domains
  publication-title: Science
– volume: 42
  start-page: 39
  year: 2002
  end-page: 52
  article-title: Regulating the mammalian genome: The role of nuclear architecture
  publication-title: Adv Enzyme Regul
– volume: 115
  start-page: 51
  year: 2002
  end-page: 59
  article-title: Mammalian nuclei become licensed for DNA replication during late telophase
  publication-title: J Cell Sci
– volume: 107
  start-page: 1449
  issue: Pt 6
  year: 1994
  end-page: 1456
  article-title: RNA polymerase II transcription is concentrated outside replication domains throughout S‐phase
  publication-title: J Cell Sci
– volume: 12
  start-page: 2183
  year: 2003
  end-page: 2193
  article-title: The specificity of cross‐reactivity: Promiscuous antibody binding involves specific hydrogen bonds rather than nonspecific hydrophobic stickiness
  publication-title: Protein Sci
– volume: 11
  start-page: 167
  year: 2001
  end-page: 174
  article-title: Chromatin remodeling in development and differentiation
  publication-title: Curr Opin Genet Dev
– volume: 21
  start-page: 356
  year: 2002
  end-page: 367
  article-title: The interaction of p53 with the nuclear matrix is mediated by F‐actin and modulated by DNA damage
  publication-title: Oncogene
– volume: 22
  start-page: 836
  year: 2000
  end-page: 845
  article-title: Histone acetylation and an epigenetic code
  publication-title: Bioessays
– volume: 255
  start-page: 5668
  year: 1980
  end-page: 5673
  article-title: Actin deoxyribonuclease I interaction. Depolymerization and nucleotide exchange
  publication-title: J Biol Chem
– volume: 227
  start-page: 680
  year: 1970
  end-page: 685
  article-title: Cleavage of structural proteins during the assembly of the head of bacteriophage T4
  publication-title: Nature
– volume: 108
  start-page: 1
  year: 1989
  end-page: 11
  article-title: Mapping replicational sites in the eucaryotic cell nucleus
  publication-title: J Cell Biol
– volume: 1594
  start-page: 335
  year: 2002
  end-page: 340
  article-title: Cold‐induced enzyme inactivation: How does cooling lead to pyridoxal phosphate‐aldimine bond cleavage in tryptophanase?
  publication-title: Biochim Biophys Acta
– volume: 108
  start-page: 471
  year: 2000
  end-page: 484
  article-title: Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci
  publication-title: Chromosoma
– volume: 276
  start-page: 13127
  year: 2001
  end-page: 13135
  article-title: Gaf‐1, a gamma‐SNAP‐binding protein associated with the mitochondria
  publication-title: J Biol Chem
– volume: 190
  start-page: 487
  year: 1986
  end-page: 498
  article-title: Cold denaturation of myoglobin
  publication-title: J Mol Biol
– volume: 146
  start-page: 1211
  year: 1999
  end-page: 1226
  article-title: Nuclear organization of mammalian genomes: Polar chromosome territories build up functionally distinct higher order compartments
  publication-title: J Cell Biol
– volume: 420
  start-page: 198
  year: 2002
  end-page: 202
  article-title: Establishment of transcriptional competence in early and late S phase
  publication-title: Nature
– volume: 108
  start-page: 325
  year: 1999
  end-page: 335
  article-title: Nuclear organization studied with the help of a hypotonic shift: Its use permits hydrophilic molecules to enter into living cells
  publication-title: Chromosoma
– volume: 64
  start-page: 348
  year: 1994
  end-page: 356
  article-title: An actin infrastructure is associated with eukaryotic chromosomes: Structural and functional significance
  publication-title: Eur J Cell Biol
– volume: 102
  start-page: 241
  year: 1998
  end-page: 251
  article-title: Structure and dynamics of human interphase chromosome territories in vivo
  publication-title: Hum Genet
– volume: 14
  start-page: 286
  year: 2002
  end-page: 298
  article-title: The many faces of histone lysine methylation
  publication-title: Curr Opin Cell Biol
– volume: 105
  start-page: 1549
  year: 1987
  end-page: 1554
  article-title: Existence of two populations of cyclin/proliferating cell nuclear antigen during the cell cycle: Association with DNA replication sites
  publication-title: J Cell Biol
– volume: 299
  start-page: 1362
  year: 2003
  end-page: 1367
  article-title: Antibody multispecificity mediated by conformational diversity
  publication-title: Science
– volume: 25
  start-page: 647
  year: 2003
  end-page: 656
  article-title: Epigenomic replication: Linking epigenetics to DNA replication
  publication-title: Bioessays
– volume: 10
  start-page: 92
  year: 2000
  end-page: 97
  article-title: Searching for a function for nuclear actin
  publication-title: Trends Cell Biol
– volume: 31
  start-page: 238
  year: 1998
  end-page: 242
  article-title: The new paradigm: Integrating genomic function and nuclear architecture
  publication-title: J Cell Biochem Suppl
– volume: 114
  start-page: 2711
  year: 2001
  end-page: 2712
  article-title: Chromatin assembly and organization
  publication-title: J Cell Sci
– volume: 285
  start-page: 39
  year: 2003
  end-page: 49
  article-title: Small interfering RNAs suppress the expression of endogenous and GFP‐fused epidermal growth factor receptor (erbB1) and induce apoptosis in erbB1‐overexpressing cells
  publication-title: Exp Cell Res
– volume: 107
  start-page: 3097
  issue: Pt 11
  year: 1994
  end-page: 3103
  article-title: Replicon clusters may form structurally stable complexes of chromatin and chromosomes
  publication-title: J Cell Sci
– volume: 154
  start-page: 283
  year: 2001
  end-page: 292
  article-title: The replication timing program of the Chinese hamster {beta}‐globin locus is established coincident with its repositioning near peripheral heterochromatin in early G1 phase
  publication-title: J Cell Biol
– volume: 105
  start-page: 347
  year: 1993
  end-page: 357
  article-title: Distribution of snRNPs, splicing factor SC‐35 and actin in interphase nuclei: Immunocytochemical evidence for differential distribution during changes in functional states
  publication-title: J Cell Sci
– volume: 115
  start-page: 4037
  year: 2002
  end-page: 4051
  article-title: The spatio‐temporal organization of DNA replication sites is identical in primary, immortalized and transformed mammalian cells
  publication-title: J Cell Sci
– volume: 76
  start-page: 4350
  year: 1979
  end-page: 4354
  article-title: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications
  publication-title: Proc Natl Acad Sci USA
– volume: 71
  start-page: 755
  year: 2002
  end-page: 781
  article-title: Nuclear actin and actin‐related proteins in chromatin remodeling
  publication-title: Annu Rev Biochem
– volume: 92
  start-page: 519
  year: 1989
  end-page: 528
  article-title: Differences in the exposure of C‐ and N‐terminal tubulin domains in cytoplasmic microtubules detected with domain‐specific monoclonal antibodies
  publication-title: J Cell Sci
– volume: 40
  start-page: 151
  year: 1987
  end-page: 173
  article-title: Role of replication time in the control of tissue‐specific gene expression
  publication-title: Am J Hum Genet
– volume: 149
  start-page: 271
  year: 2000
  end-page: 280
  article-title: Dynamics of DNA replication factories in living cells
  publication-title: J Cell Biol
– volume: 81
  start-page: 56
  year: 2001
  end-page: 67
  article-title: Targeting of PCNA to sites of DNA replication in the mammalian cell nucleus
  publication-title: J Cell Biochem
– volume: 244
  start-page: 276
  year: 1989
  end-page: 278
  article-title: Heat and cold denaturation of phosphoglycerate kinase (interaction of domains)
  publication-title: FEBS Lett
– ident: e_1_2_6_43_1
  doi: 10.3109/10409239009090612
– ident: e_1_2_6_24_1
  doi: 10.1126/science.1079731
– ident: e_1_2_6_29_1
  doi: 10.1016/S0955-0674(02)00335-6
– ident: e_1_2_6_31_1
  doi: 10.1083/jcb.149.2.271
– ident: e_1_2_6_30_1
  doi: 10.1111/j.1462-5822.2007.00901.x
– ident: e_1_2_6_42_1
  doi: 10.1016/S1047-8477(02)00528-2
– volume: 92
  start-page: 519
  year: 1989
  ident: e_1_2_6_14_1
  article-title: Differences in the exposure of C‐ and N‐terminal tubulin domains in cytoplasmic microtubules detected with domain‐specific monoclonal antibodies
  publication-title: J Cell Sci
  doi: 10.1242/jcs.92.3.519
  contributor:
    fullname: Dráber P
– ident: e_1_2_6_36_1
  doi: 10.1016/S0959-437X(00)00175-1
– ident: e_1_2_6_57_1
  doi: 10.1242/jcs.109.4.787
– volume: 107
  start-page: 1449
  issue: 6
  year: 1994
  ident: e_1_2_6_59_1
  article-title: RNA polymerase II transcription is concentrated outside replication domains throughout S‐phase
  publication-title: J Cell Sci
  doi: 10.1242/jcs.107.6.1449
  contributor:
    fullname: Wansink DG
– ident: e_1_2_6_61_1
  doi: 10.1038/nature01150
– ident: e_1_2_6_15_1
  doi: 10.1016/S0167-4838(01)00325-9
– ident: e_1_2_6_8_1
  doi: 10.1016/S0960-9822(00)00312-2
– ident: e_1_2_6_17_1
  doi: 10.1126/science.6719109
– ident: e_1_2_6_55_1
  doi: 10.1073/pnas.76.9.4350
– ident: e_1_2_6_58_1
  doi: 10.1016/S0955-0674(03)00043-7
– ident: e_1_2_6_11_1
  doi: 10.1242/jcs.00087
– ident: e_1_2_6_28_1
  doi: 10.1016/S0167-4838(01)00354-5
– ident: e_1_2_6_62_1
  doi: 10.1007/s004390050686
– ident: e_1_2_6_23_1
  doi: 10.1110/ps.03172703
– ident: e_1_2_6_27_1
  doi: 10.1007/s004120050384
– ident: e_1_2_6_3_1
  doi: 10.1016/S0065-2571(01)00041-3
– ident: e_1_2_6_41_1
  doi: 10.1146/annurev.biochem.71.110601.135507
– ident: e_1_2_6_56_1
  doi: 10.1002/1521-1878(200009)22:9<836::AID-BIES9>3.0.CO;2-X
– ident: e_1_2_6_2_1
  doi: 10.1016/j.yexcr.2004.02.010
– volume: 107
  start-page: 3097
  issue: 11
  year: 1994
  ident: e_1_2_6_53_1
  article-title: Replicon clusters may form structurally stable complexes of chromatin and chromosomes
  publication-title: J Cell Sci
  doi: 10.1242/jcs.107.11.3097
  contributor:
    fullname: Sparvoli E
– ident: e_1_2_6_38_1
  doi: 10.1186/1471-2121-2-10
– ident: e_1_2_6_40_1
  doi: 10.1038/sj.onc.1205112
– ident: e_1_2_6_19_1
  doi: 10.1016/0014-5793(89)80544-7
– ident: e_1_2_6_4_1
  doi: 10.1002/(SICI)1097-4644(1998)72:30/31 <238::AID-JCB29>3.0.CO;2-F
– ident: e_1_2_6_7_1
  doi: 10.1083/jcb.105.4.1549
– ident: e_1_2_6_16_1
  doi: 10.1083/jcb.152.2.F11
– ident: e_1_2_6_33_1
  doi: 10.1083/jcb.200211127
– ident: e_1_2_6_18_1
  doi: 10.1242/jcs.112.6.797
– ident: e_1_2_6_13_1
  doi: 10.1242/jcs.115.1.51
– ident: e_1_2_6_60_1
  doi: 10.1126/science.281.5382.1502
– ident: e_1_2_6_48_1
  doi: 10.1083/jcb.146.6.1211
– ident: e_1_2_6_39_1
  doi: 10.1083/jcb.108.1.1
– ident: e_1_2_6_25_1
  doi: 10.1016/S0960-9822(02)00976-4
– ident: e_1_2_6_47_1
  doi: 10.1242/jcs.114.15.2711
– ident: e_1_2_6_5_1
  doi: 10.1007/s004120050399
– ident: e_1_2_6_52_1
  doi: 10.1002/1097-4644(20010401)81:1<56::AID-JCB1023>3.0.CO;2-#
– volume: 40
  start-page: 151
  year: 1987
  ident: e_1_2_6_21_1
  article-title: Role of replication time in the control of tissue‐specific gene expression
  publication-title: Am J Hum Genet
  contributor:
    fullname: Holmquist GP
– ident: e_1_2_6_12_1
  doi: 10.1016/S1097-2765(00)80227-0
– ident: e_1_2_6_26_1
  doi: 10.1021/bi010767j
– ident: e_1_2_6_6_1
  doi: 10.1016/S0021-9258(18)66672-4
– ident: e_1_2_6_54_1
  doi: 10.1016/S1097-2765(02)00729-3
– ident: e_1_2_6_49_1
  doi: 10.1242/jcs.105.2.347
– ident: e_1_2_6_35_1
  doi: 10.1002/bies.10305
– volume: 255
  start-page: 5668
  year: 1980
  ident: e_1_2_6_20_1
  article-title: Actin deoxyribonuclease I interaction. Depolymerization and nucleotide exchange
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)70681-4
  contributor:
    fullname: Hitchcock S
– ident: e_1_2_6_45_1
  doi: 10.1016/S0962-8924(99)01713-4
– volume: 64
  start-page: 348
  year: 1994
  ident: e_1_2_6_50_1
  article-title: An actin infrastructure is associated with eukaryotic chromosomes: Structural and functional significance
  publication-title: Eur J Cell Biol
  contributor:
    fullname: Sauman I
– ident: e_1_2_6_10_1
  doi: 10.1074/jbc.M009424200
– ident: e_1_2_6_32_1
  doi: 10.1083/jcb.200104043
– ident: e_1_2_6_46_1
  doi: 10.1073/pnas.032662899
– ident: e_1_2_6_34_1
  doi: 10.1083/jcb.143.6.1415
– ident: e_1_2_6_37_1
  doi: 10.1016/S0014-4827(02)00050-2
– ident: e_1_2_6_44_1
  doi: 10.1016/0022-2836(86)90017-3
– ident: e_1_2_6_9_1
  doi: 10.1016/S0955-0674(02)00324-1
– ident: e_1_2_6_51_1
  doi: 10.1038/ng1005
– ident: e_1_2_6_22_1
  doi: 10.1083/jcb.140.6.1285
SSID ssj0009932
Score 1.8148015
Snippet Evidence is presented for the reversible, cold‐dependent immunofluorescence detection of the epitope (hereafter referred to as epiC), recognized by a...
Evidence is presented for the reversible, cold-dependent immunofluorescence detection of the epitope (hereafter referred to as epiC), recognized by a...
Abstract Evidence is presented for the reversible, cold‐dependent immunofluorescence detection of the epitope (hereafter referred to as epiC ), recognized by a...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 899
SubjectTerms Actins - immunology
anti-actin
Blotting, Western
cell cycle
Cells, Cultured
chromatin
Chromatin - chemistry
cold-dependent epitope detection
DNA Replication
G1 Phase
Humans
Image Processing, Computer-Assisted
immunofluorescence microscopy
Microscopy, Fluorescence
nuclear actin
S Phase
Title Replication-coupled modulation of early replicating chromatin domains detected by anti-actin antibody
URI https://api.istex.fr/ark:/67375/WNG-228S65Q9-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcb.20374
https://www.ncbi.nlm.nih.gov/pubmed/15714458
https://search.proquest.com/docview/20729009
https://search.proquest.com/docview/67514081
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hqopeKAVaUvqwUFVxCRBvnNjqia5KEVKRaIvggGTZ8aQstAnah9Tl1J_Q38gvYexsdkVVpKqnJMrYcjzjzDd-fAPwpsCk41KpYodcUYDiTGxNqeJOaTJXOPJKpT8o_Okw2z9OD07F6Ry8a8_CNPwQ0wk3PzLC_9oPcGMH2zPS0IvCUnjXyT0XqCfS84Do84w6ivxuWEEgC44Jw_CWVWiHb09L3vFFD3y3_vwb0LyLW4Pj2XsMZ22Tm_0ml1ujod0qrv9gc_zPb1qCxQkgZbuNBT2BOayW4WGTonK8DAvdNiPcCvQIrbdzfDe_fhf16Oo7OvajdpMcYKwuGXrGZNZvJatvrDjv1x4XV8zRtVcNmEO_dEFF7ZiRZntUmT9fUYUHW7vxKhzvffja3Y8nqRriggBWGmcopRNojEl4YlVOrpcuJWmdK5kmDtUOopGc3ucdJNBTiBRFmSVWpsqnz3oK81Vd4Row4ax0LilTZVRgJyQZk-dYJpkSPMsj2GiVpq8aRg7dcC9zTf2nQ_9F8Daocyph-pd-C1su9MnhR825_JKJI6V5BK9bfWvqTb9aYiqsRwOqh-IOsqP7JSjWovBUJhE8awxl1h6RU6AqZASbQd33N1QfdN-Hm-f_LroOjwKBbNg_9ALmh_0RviRoNLSvwhi4BacIDFY
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVqhceJRXKFALIcQlbeONE1viAivKUtqVgFb0giw7nrRL26Ta7kpdTvwEfiO_hLGz2VURlRCnJMrYcjzjzDd-fAPwvMCk41KpYodcUYDiTGxNqeJOaTJXOPJKpT8ovNvPevvp9oE4WIBX7VmYhh9iNuHmR0b4X_sB7iekN-asod8KS_FdJ0-vwRINdxECqk9z8ijyvGENgWw4JhTDW16hTb4xK3rJGy35jr34G9S8jFyD69m6BV_bRjc7To7XxyO7Xnz_g8_xf7_qNtycYlL2ujGiO7CA1Qpcb7JUTlZgudsmhbsLAwLs7TTfrx8_i3p8doKOndZumgaM1SVDT5rMhq1kdciKo2HtoXHFHF0H1Tlz6FcvqKidMFLugCrzRyyq8GBrN7kH-1tv97q9eJqtIS4IY6VxhlI6gcaYhCdW5eR96VKS4rmSaeJQbSIayel93kHCPYVIUZRZYmWqfAat-7BY1RU-BCaclc4lZaqMCgSFJGPyHMskU4JneQTPWq3ps4aUQzf0y1xT_-nQfxG8CPqcSZjhsd_Flgv9pf9Ocy4_Z-Kj0jyCtVbhmnrTL5iYCuvxOdVDoQcZ0tUSZHYUocokggeNpczbI3KKVYWM4GXQ99UN1dvdN-Hm0b-LrsFyb293R--8739YhRuBTzZsJ3oMi6PhGJ8QUhrZp2FA_AZpkRB4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VVhwvHOUKVy2EEC9pG8dObPEEW5ZSYMVV0Qcky45tWArJarsrsTzxE_iN_BLGzmZXRVRCPCVRxpbjGWe-8fENwL3KZbllQqbWUYkBitWp0V6mudeFrSx6JR8OCr8cFLv7bO-AH6zAw-4sTMsPsZhwCyMj_q_DAB9Zv7UkDf1cGQzv8pKdgjVW5DSY9M6bJXcUOt64hIAmnCKIoR2t0DbdWhQ95ozWQr9--xvSPA5co-fpX4APXZvbDSeHm9OJ2ay-_0Hn-J8fdRHOzxEpedSa0CVYcfU6nG5zVM7W4WyvSwl3GYYI17tJvl8_flbNdPTFWfK1sfMkYKTxxAXKZDLuJOuPpPo0bgIwronF67A-ItaFtQssamYEVTvEysIBizo-mMbOrsB-_8m73m46z9WQVoiwWFo4ISx3WuuMZkaW6Hvx4lHtVAqWWSe3ndOC4vsyd4h6Ks4c90VmBJMhf9ZVWK2b2l0Hwq0R1maeSS0jPSHK6LJ0Piskp0WZwN1OaWrUUnKolnyZKuw_FfsvgftRnQsJPT4Me9hKrt4PnipKxduCv5aKJrDR6Vthb4blEl27ZnqE9WDggXZ0sgQGWxifiiyBa62hLNvDS4xUuUjgQVT3yQ1Ve73H8ebGv4tuwJlXO3314tng-U04F8lk416iW7A6GU_dbYRJE3MnDoffNrgPJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Replication-coupled+modulation+of+early+replicating+chromatin+domains+detected+by+anti-actin+antibody&rft.jtitle=Journal+of+cellular+biochemistry&rft.au=Fidlerov%C3%A1%2C+Helena&rft.au=Masata%2C+Martin&rft.au=Mal%C3%ADnsk%C3%BD%2C+Jan&rft.au=Fialov%C3%A1%2C+Mark%C3%A9ta&rft.date=2005-04-01&rft.issn=0730-2312&rft.volume=94&rft.issue=5&rft.spage=899&rft.epage=916&rft_id=info:doi/10.1002%2Fjcb.20374&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-2312&client=summon