Paclitaxel-Loaded Colloidal Silica and TPGS-Based Solid Self-Emulsifying System Interferes Akt/mTOR Pathway in MDA-MB-231 and Demonstrates Anti-tumor Effect in Syngeneic Mammary Tumors

A solid self-emulsifying drug delivery system (SEDDS) of paclitaxel (PTX) was developed that could enhance its oral bioavailability and neutralize other niggles associated with conventional delivery systems of PTX. TPGS-centered SEDDS containing PTX was optimized by Box-Behnken experimental design a...

Full description

Saved in:
Bibliographic Details
Published inAAPS PharmSciTech Vol. 21; no. 8; p. 313
Main Authors Meher, Jaya Gopal, Dixit, Shivani, Singh, Yuvraj, Pawar, Vivek K., Konwar, Rituraj, Saklani, Ravi, Chourasia, Manish K.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 09.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A solid self-emulsifying drug delivery system (SEDDS) of paclitaxel (PTX) was developed that could enhance its oral bioavailability and neutralize other niggles associated with conventional delivery systems of PTX. TPGS-centered SEDDS containing PTX was optimized by Box-Behnken experimental design and then formulated as fumed colloidal silica–based solid SEDDS microparticles (Si-PTX-S-SEDDS). AFM analysis exhibited round-shaped microparticles of approximately 2–3 μM diameter, whereas after reconstitution, particle size measurement showed nanoemulsion droplets of 30.00 ± 2.00 nm with a zeta potential of 17.38 ± 2.88 mV. Si-PTX-S-SEDDS displayed improved efficacy proven by reduced IC 50 of 0.19 ± 0.03 μM against MDA-MB-231 cells and a 45.83-fold higher cellular uptake in comparison to free PTX. Molecular mechanistic studies showed mitochondria-mediated intrinsic pathway of apoptosis following Akt/mTOR pathway, which is accompanied by survivin downregulation. Rhodamine 123 assay and chylomicron flow blocking studies revealed P-gp inhibition potential and lymphatic uptake of Si-PTX-S-SEDDS, responsible for over 4-fold increment in oral bioavailability compared to PTX administered as Taxol. In vivo anti-tumor studies in syngeneic mammary tumor model in SD rats revealed higher efficacy of Si-PTX-S-SEDDS as evident from significant reduction in tumor burden. In total, the developed Si-PTX-S-SEDDS formulation was found as an appropriate option for oral delivery of PTX.
ISSN:1530-9932
1530-9932
DOI:10.1208/s12249-020-01855-1