A Multi-enzyme Cascade of Hemoglobin Proteolysis in the Intestine of Blood-feeding Hookworms

Blood-feeding pathogens digest hemoglobin (Hb) as a source of nutrition, but little is known about this process in multicellular parasites. The intestinal brush border membrane of the canine hookworm, Ancylostoma caninum, contains aspartic proteases (APR-1), cysteine proteases (CP-2), and metallopro...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 279; no. 34; pp. 35950 - 35957
Main Authors Williamson, Angela L, Lecchi, Paolo, Turk, Benjamin E, Choe, Youngchool, Hotez, Peter J, McKerrow, James H, Cantley, Lewis C, Sajid, Mohammed, Craik, Charles S, Loukas, Alex
Format Journal Article
LanguageEnglish
Published United States American Society for Biochemistry and Molecular Biology 20.08.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Blood-feeding pathogens digest hemoglobin (Hb) as a source of nutrition, but little is known about this process in multicellular parasites. The intestinal brush border membrane of the canine hookworm, Ancylostoma caninum, contains aspartic proteases (APR-1), cysteine proteases (CP-2), and metalloproteases (MEP-1), the first of which is known to digest Hb. We now show that Hb is degraded by a multi-enzyme, synergistic cascade of proteolysis. Recombinant APR-1 and CP-2, but not MEP-1, digested native Hb and denatured globin. MEP-1, however, did cleave globin fragments that had undergone prior digestion by APR-1 and CP-2. Proteolytic cleavage sites within the Hb α and β chains were determined for the three enzymes, identifying a total of 131 cleavage sites. By scanning synthetic combinatorial peptide libraries with each enzyme, we compared the preferred residues cleaved in the libraries with the known cleavage sites within Hb. The semi-ordered pathway of Hb digestion described here is surprisingly similar to that used by Plasmodium to digest Hb and provides a potential mechanism by which these hemoglobinases are efficacious vaccines in animal models of hookworm infection.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M405842200