Direct and Inverse Problems in a Variational Concept of Environmental Modeling

A concept of environmental forecasting based on a variational approach is discussed. The basic idea is to augment the existing technology of modeling by a combination of direct and inverse methods. By this means, the scope of environmental studies can be substantially enlarged. In the concept, mathe...

Full description

Saved in:
Bibliographic Details
Published inPure and applied geophysics Vol. 169; no. 3; pp. 447 - 465
Main Authors Penenko, Vladimir, Baklanov, Alexander, Tsvetova, Elena, Mahura, Alexander
Format Journal Article
LanguageEnglish
Published Basel SP Birkhäuser Verlag Basel 01.03.2012
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A concept of environmental forecasting based on a variational approach is discussed. The basic idea is to augment the existing technology of modeling by a combination of direct and inverse methods. By this means, the scope of environmental studies can be substantially enlarged. In the concept, mathematical models of processes and observation data subject to some uncertainties are considered. The modeling system is derived from a specially formulated weak-constraint variational principle. A set of algorithms for implementing the concept is presented. These are: algorithms for the solution of direct, adjoint, and inverse problems; adjoint sensitivity algorithms; data assimilation procedures; etc. Methods of quantitative estimations of uncertainty are of particular interest since uncertainty functions play a fundamental role for data assimilation, assessment of model quality, and inverse problem solving. A scenario approach is an essential part of the concept. Some methods of orthogonal decomposition of multi-dimensional phase spaces are used to reconstruct the hydrodynamic background fields from available data and to include climatic data into long-term prognostic scenarios. Subspaces with informative bases are constructed to use in deterministic or stochastic-deterministic scenarios for forecasting air quality and risk assessment. The results of implementing example scenarios for the Siberian regions are presented.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0033-4553
1420-9136
DOI:10.1007/s00024-011-0380-5