Opto-VLSI-based correlator architecture for multiwavelength optical header recognition

A novel optical correlator employing an opto-very-large-scale-integration (VLSI) processor to construct the routing lookup table, in conjunction with an array of fiber Bragg gratings (FBGs) for multiwavelength optical header recognition is demonstrated. The FBG array provides wavelength-dependent ti...

Full description

Saved in:
Bibliographic Details
Published inJournal of lightwave technology Vol. 24; no. 7; pp. 2779 - 2785
Main Authors Aljada, M., Alameh, K.E., Al-Begain, K.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.07.2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A novel optical correlator employing an opto-very-large-scale-integration (VLSI) processor to construct the routing lookup table, in conjunction with an array of fiber Bragg gratings (FBGs) for multiwavelength optical header recognition is demonstrated. The FBG array provides wavelength-dependent time delays, whereas the opto-VLSI processor generates wavelength intensity profiles that match arbitrary bit patterns. The recognition of 4-b optical patterns is experimentally demonstrated at 2.2 Gb/s by showing that the correlator produces an autocorrelation waveform of high peak whenever the input bit pattern matches the wavelength intensity profile.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0733-8724
1558-2213
DOI:10.1109/JLT.2006.875949