Privacy-Preserving Live Video Analytics for Drones via Edge Computing
The use of lightweight drones has surged in recent years across both personal and commercial applications, necessitating the ability to conduct live video analytics on drones with limited computational resources. While edge computing offers a solution to the throughput bottleneck, it also opens the...
Saved in:
Published in | Applied sciences Vol. 14; no. 22; p. 10254 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The use of lightweight drones has surged in recent years across both personal and commercial applications, necessitating the ability to conduct live video analytics on drones with limited computational resources. While edge computing offers a solution to the throughput bottleneck, it also opens the door to potential privacy invasions by exposing sensitive visual data to risks. In this work, we present a lightweight, privacy-preserving framework designed for real-time video analytics. By integrating a novel split-model architecture tailored for distributed deep learning through edge computing, our approach strikes a balance between operational efficiency and privacy. We provide comprehensive evaluations on privacy, object detection, latency, bandwidth usage, and object-tracking performance for our proposed privacy-preserving model. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app142210254 |