PLGA‐PEG‐PLGA Polymer: From Synthesis to Advanced Pharmaceutical Applications
This paper presents an in‐depth analysis of the PLGA‐PEG‐PLGA polymer, focusing on its synthesis and applications in advanced drug delivery systems (DDSs). PLGA‐PEG‐PLGA, a triblock copolymer, gains attention due to its biodegradability, biocompatibility, and thermosensitive properties, making it su...
Saved in:
Published in | Advances in polymer technology Vol. 2025; no. 1 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
John Wiley & Sons, Inc
01.01.2025
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents an in‐depth analysis of the PLGA‐PEG‐PLGA polymer, focusing on its synthesis and applications in advanced drug delivery systems (DDSs). PLGA‐PEG‐PLGA, a triblock copolymer, gains attention due to its biodegradability, biocompatibility, and thermosensitive properties, making it suitable for encapsulating both hydrophilic and hydrophobic compounds. The polymer’s ability to undergo sol‐to‐gel at body temperature allows controlled and targeted drug release, significantly enhancing the solubility of poorly soluble drugs, such as paclitaxel and irinotecan. The paper discusses the polymer’s synthesis via ring‐opening polymerization (ROP) and explores its optimization using various methods, including microwave‐assisted techniques and supercritical CO 2 . Additionally, it examines the polymer’s cytotoxicity in in vitro and in vivo studies, emphasizing its low toxicity and ability to deliver chemotherapeutic agents more effectively. The study highlights the polymer’s potential in cancer therapy, biopharmaceutical delivery, and the development of dual‐sensitive drug carriers. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0730-6679 1098-2329 |
DOI: | 10.1155/adv/8899828 |