Developing a New HSR Switching Node (SwitchBox) for Improving Traffic Performance in HSR Networks
High availability is crucial for industrial Ethernet networks as well as Ethernet-based control systems such as automation networks and substation automation systems (SAS). Since standard Ethernet does not support fault tolerance capability, the high availability of Ethernet networks can be increase...
Saved in:
Published in | Energies (Basel) Vol. 9; no. 1; p. 36 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | High availability is crucial for industrial Ethernet networks as well as Ethernet-based control systems such as automation networks and substation automation systems (SAS). Since standard Ethernet does not support fault tolerance capability, the high availability of Ethernet networks can be increased by using redundancy protocols. Various redundancy protocols for Ethernet networks have been developed and standardized, such as rapid spanning tree protocol (RSTP), media redundancy protocol (MRP), parallel redundancy protocol (PRP), high-availability seamless redundancy (HSR) and others. RSTP and MRP have switchover delay drawbacks. PRP provides zero recovery time, but requires a duplicate network infrastructure. HSR operation is similar to PRP, but HSR uses a single network. However, the standard HSR protocol is mainly applied to ring-based topologies and generates excessively unnecessary redundant traffic in the network. In this paper, we develop a new switching node for the HSR protocol, called SwitchBox, which is used in HSR networks in order to support any network topology and significantly reduce redundant network traffic, including unicast, multicast and broadcast traffic, compared with standard HSR. By using the SwitchBox, HSR not only provides seamless communications with zero switchover time in case of failure, but it is also easily applied to any network topology and significantly reduces unnecessary redundant traffic in HSR networks. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en9010036 |