Enhancement of natural killer cell function by titanocenes in mice bearing Ehrlich ascites tumour
In the present work, we studied the effects of two titanocenes, biscyclopentadienyldichlorotitanium IV, (DDCT) and its derivative, biscyclopentadienylditiocianatetitanium IV (BCDT), on the activity of natural killer (NK) cells in Ehrlich ascites tumour (EAT)-bearing BALB/c mice. In order to investig...
Saved in:
Published in | European journal of pharmacology Vol. 473; no. 2-3; pp. 191 - 196 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
25.07.2003
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In the present work, we studied the effects of two titanocenes, biscyclopentadienyldichlorotitanium IV, (DDCT) and its derivative, biscyclopentadienylditiocianatetitanium IV (BCDT), on the activity of natural killer (NK) cells in Ehrlich ascites tumour (EAT)-bearing BALB/c mice. In order to investigate a more direct effect of these compounds on NK cell function, we performed experiments with severe combined immunodeficiency (SCID) mice, which exhibit a normal NK cell response in the absence of T and B cells. The treatment consisted of intraperitoneal (i.p.) administration of 15 mg/kg/day of DDCT for 2 days or 10 mg/kg/day of BCDT for 3 days. In addition, to verify whether the effects produced by the titanocenes were compound specific or related to a direct antitumour effect, we also investigated the effects of a 3-day treatment with 100 mg/kg of cyclophosphamide cyclophosphamide on NK cell activity. Our results demonstrated that, in BALB/c and SCID mice, NK cell function declined to subnormal levels after inoculation of the tumour. In these animals, although treatment with DDCT and BCDT significantly enhanced NK cell function, only DDCT restored NK cell activity to normal values in all stages studied. Conversely, treatment with cyclophosphamide reduced NK cell function in nontumour bearing SCID mice and was also unable to restore the decreased NK activity of tumour-bearing SCID mice, thus demonstrating that the enhancement of NK cell function by titanocenes is compound specific. The same effect of cyclophosphamide was observed with BALB/c mice. In the present study, the up-modulatory effects of these two compounds on NK cell function reveal a new aspect of the mechanism of antitumoural action of titanocenes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0014-2999 1879-0712 |
DOI: | 10.1016/S0014-2999(03)01967-8 |