Numerical Analysis and Experiment for Stress Wave Propagation in Two Connected Cylindrical Bodies with Different Cross-Sectional Area and Same Mechanical Impedance
In this study, the behaviour of elastic stress wave propagating two connected cylindrical bodies was examined using dynamic finite element method (FEM). They consist of two bodies with different cross-sectional area, different Young’s modulus and identical mechanical impedance. It was found that whe...
Saved in:
Published in | EPJ Web of Conferences Vol. 183; p. 1033 |
---|---|
Main Authors | , , , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Les Ulis
EDP Sciences
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this study, the behaviour of elastic stress wave propagating two connected cylindrical bodies was examined using dynamic finite element method (FEM). They consist of two bodies with different cross-sectional area, different Young’s modulus and identical mechanical impedance. It was found that when an incident wave passes through the boundary step between two different cross-sectional areas, a pair of reflected waves which has the same amplitude and opposite sign was observed, despite the same mechanical impedance. This phenomenon appears to be caused by the loading and unloading the boundary section due to the arrival and the passage of incident wave. It was also found that a connection manner to insert the smaller diameter cylinder into the other cylinder with a little length is quite effective for the reduction of the reflected wave, because of the superposition of waves from two edges and control of local deformation. This phenomenon was verified by a series of impact experiments using two cylindrical bodies connected by interference fit. |
---|---|
ISSN: | 2100-014X 2101-6275 2100-014X |
DOI: | 10.1051/epjconf/201818301033 |