CFD simulation of forced heat transfer of gas in pipe
This paper presents results from CFD simulation of heat transfer processes in ABAQUS. The investigations are realized at forced convection of air in steel pipe. Verification of the computing mesh and validation of the model, have been done. The average heat convection coefficients have been determin...
Saved in:
Published in | E3S Web of Conferences Vol. 112; p. 1008 |
---|---|
Main Authors | , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Les Ulis
EDP Sciences
01.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents results from CFD simulation of heat transfer processes in ABAQUS. The investigations are realized at forced convection of air in steel pipe. Verification of the computing mesh and validation of the model, have been done. The average heat convection coefficients have been determined by methodology based on criteria equations, and on simulation methodology. Heat transfer processes between air flow in a steel pipe and the environment, have been experimentally accomplished. In order to analyze the processes of heat convection between the fluid and the internal surface of the pipe, numerical modelling is applied. A geometric model of the fluid flowing in the pipe is built. The computing mesh has been verified by increasing the number of cells and nodes. The numerical model has been validated based on experimentally measured temperature values and the simulation data. The heat convection coefficients have been investigated by analogy of the above. The results demonstrate that the numerical model is adequate and can be used to study similar heat transfer processes. |
---|---|
ISSN: | 2267-1242 2555-0403 2267-1242 |
DOI: | 10.1051/e3sconf/201911201008 |