Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering

Synthetic magnetism has been used to control charge neutral excitations for applications ranging from classical beam steering to quantum simulation. In optomechanics, radiation-pressure-induced parametric coupling between optical (photon) and mechanical (phonon) excitations may be used to break time...

Full description

Saved in:
Bibliographic Details
Published inNature physics Vol. 13; no. 5; pp. 465 - 471
Main Authors Fang, Kejie, Luo, Jie, Metelmann, Anja, Matheny, Matthew H., Marquardt, Florian, Clerk, Aashish A., Painter, Oskar
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.05.2017
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Synthetic magnetism has been used to control charge neutral excitations for applications ranging from classical beam steering to quantum simulation. In optomechanics, radiation-pressure-induced parametric coupling between optical (photon) and mechanical (phonon) excitations may be used to break time-reversal symmetry, providing the prerequisite for synthetic magnetism. Here we design and fabricate a silicon optomechanical circuit with both optical and mechanical connectivity between two optomechanical cavities. Driving the two cavities with phase-correlated laser light results in a synthetic magnetic flux, which, in combination with dissipative coupling to the mechanical bath, leads to non-reciprocal transport of photons with 35 dB of isolation. Additionally, optical pumping with blue-detuned light manifests as a particle non-conserving interaction between photons and phonons, resulting in directional optical amplification of 12 dB in the isolator through-direction. These results suggest the possibility of using optomechanical circuits to create a more general class of non-reciprocal optical devices, and further, to enable new topological phases for both light and sound on a microchip. Combining synthetic magnetism and controlled dissipation, researchers created an optomechanical device in which photons and phonons are coupled, enabling non-reciprocal (asymmetric) photon transport and directional amplification.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1745-2473
1745-2481
DOI:10.1038/nphys4009