Mitochondrial Perturbation Negatively Affects Auxin Signaling

Mitochondria are crucial players in the signaling and metabolic homeostasis of the plant cell. The molecular components that orchestrate the underlying processes, however, are largely unknown. Using a chemical biology approach, we exploited the responsiveness of Arabidopsis UDP-glucosyltransferase-e...

Full description

Saved in:
Bibliographic Details
Published inMolecular plant Vol. 7; no. 7; pp. 1138 - 1150
Main Authors Kerchev, Pavel Ivanov, De Clercq, Inge, Denecker, Jordi, Mühlenbock, Per, Kumpf, Robert, Nguyen, Long, Audenaert, Dominique, Dejonghe, Wim, Van Breusegem, Frank
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 01.07.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Mitochondria are crucial players in the signaling and metabolic homeostasis of the plant cell. The molecular components that orchestrate the underlying processes, however, are largely unknown. Using a chemical biology approach, we exploited the responsiveness of Arabidopsis UDP-glucosyltransferase-encoding UGT74E2 towards mitochondrial per- turbation in order to look for novel mechanisms regulating mitochondria-to-nucleus communication. The most potent inducers of UGT74E2 shared a (2-furyl)acrylate (FAA) substructure that negatively affected mitochondrial function and was identified before as an auxin transcriptional inhibitor. Based on these premises, we demonstrated that perturbed mitochondria negatively affect the auxin signaling machinery. Moreover, chemical perturbation of polar auxin transport and auxin biosynthesis was sufficient to induce mitochondrial retrograde markers and their transcript abundance was constitutively elevated in the absence of the auxin transcriptional activators ARF7 and ARF19.
Bibliography:31-2013/Q
mitochondrial perturbation; auxin signaling; retrograde communication.
Mitochondria are crucial players in the signaling and metabolic homeostasis of the plant cell. The molecular components that orchestrate the underlying processes, however, are largely unknown. Using a chemical biology approach, we exploited the responsiveness of Arabidopsis UDP-glucosyltransferase-encoding UGT74E2 towards mitochondrial per- turbation in order to look for novel mechanisms regulating mitochondria-to-nucleus communication. The most potent inducers of UGT74E2 shared a (2-furyl)acrylate (FAA) substructure that negatively affected mitochondrial function and was identified before as an auxin transcriptional inhibitor. Based on these premises, we demonstrated that perturbed mitochondria negatively affect the auxin signaling machinery. Moreover, chemical perturbation of polar auxin transport and auxin biosynthesis was sufficient to induce mitochondrial retrograde markers and their transcript abundance was constitutively elevated in the absence of the auxin transcriptional activators ARF7 and ARF19.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-2052
1752-9867
DOI:10.1093/mp/ssu071