Mobile handset performance evaluation using radiation pattern measurements

The mean effective gain is an attractive performance measure of mobile handsets, since it incorporates both directional and polarization properties of the handset and environment. In this work the mean effective gain is computed from measured spherical radiation patterns of five different mobile han...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on antennas and propagation Vol. 54; no. 7; pp. 2154 - 2165
Main Authors Nielsen, J. O., Pedersen, G.F.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.07.2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The mean effective gain is an attractive performance measure of mobile handsets, since it incorporates both directional and polarization properties of the handset and environment. In this work the mean effective gain is computed from measured spherical radiation patterns of five different mobile handsets, both in free space and including a human head & shoulder phantom. Different models of the environment allow a comparison of the mean effective gain obtained for realistic models based on measurements with the total radiated power and the total isotropic sensitivity. All the comparisons are based on the mean effective gain values obtained for different orientations of the handsets in the environments. For practical measurements it is important to minimize the measurement time. The paper includes a study of the variation in mean effective gain when the number of samples in the spherical radiation pattern is reduced. Furthermore, the frequency dependence of the mean effective gain is investigated, and a method is proposed for reducing the required number of measurements on different frequencies.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2006.877156