Projection-like Retractions on Matrix Manifolds

This paper deals with constructing retractions, a key step when applying optimization algorithms on matrix manifolds. For submanifolds of Euclidean spaces, we show that the operation consisting of taking a tangent step in the embedding Euclidean space followed by a projection onto the submanifold is...

Full description

Saved in:
Bibliographic Details
Published inSIAM journal on optimization Vol. 22; no. 1; pp. 135 - 158
Main Authors Absil, P.-A., Malick, Jérôme
Format Journal Article
LanguageEnglish
Published Philadelphia Society for Industrial and Applied Mathematics 01.01.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper deals with constructing retractions, a key step when applying optimization algorithms on matrix manifolds. For submanifolds of Euclidean spaces, we show that the operation consisting of taking a tangent step in the embedding Euclidean space followed by a projection onto the submanifold is a retraction. We also show that the operation remains a retraction if the projection is generalized to a projection-like procedure that consists of coming back to the submanifold along "admissible" directions, and we give a sufficient condition on the admissible directions for the generated retraction to be second order. This theory offers a framework in which previously proposed retractions can be analyzed, as well as a toolbox for constructing new ones. Illustrations are given for projection-like procedures on some specific manifolds for which we have an explicit, easy-to-compute expression.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:1052-6234
1095-7189
DOI:10.1137/100802529