Coordinated Control Strategies of VSC-HVDC-Based Wind Power Systems for Low Voltage Ride Through

The Voltage Source Converter-HVDC (VSC-HVDC) system applied to wind power generation can solve large scale wind farm grid-connection and long distance transmission problems. However, the low voltage ride through (LVRT) of the VSC-HVDC connected wind farm is a key technology issue that must be solved...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 8; no. 7; pp. 7224 - 7242
Main Authors Zhang, Xinyin, Wu, Zaijun, Hu, Minqiang, Li, Xianyun, Lv, Ganyun
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Voltage Source Converter-HVDC (VSC-HVDC) system applied to wind power generation can solve large scale wind farm grid-connection and long distance transmission problems. However, the low voltage ride through (LVRT) of the VSC-HVDC connected wind farm is a key technology issue that must be solved, and it is currently lacking an economic and effective solution. In this paper, a LVRT coordinated control strategy is proposed for the VSC-HVDC-based wind power system. In this strategy, the operation and control of VSC-HVDC and wind farm during the grid fault period is improved. The VSC-HVDC system not only provides reactive power support to the grid, but also effectively maintains the power balance and DC voltage stability by reducing wind-farm power output, without increasing the equipment investment. Correspondingly, to eliminate the influence on permanent magnet synchronous generator (PMSG)-based wind turbine (WT) systems, a hierarchical control strategy is designed. The speed and validity of the proposed LVRT coordinated control strategy and hierarchical control strategy were verified by MATLAB/Simulink simulations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1073
1996-1073
DOI:10.3390/en8077224