A single-tube sample preparation method based on a dual-electrostatic interaction strategy for molecular diagnosis of gram-negative bacteria

A single-tube method based on a dual-electrostatic interaction (EI) strategy for bacteria capture and DNA extraction was designed to enable the highly sensitive detection of nucleic acids. Specially designed magnetic nanoparticles were developed to meet the opposing requirements of a single-tube met...

Full description

Saved in:
Bibliographic Details
Published inMikrochimica acta (1966) Vol. 187; no. 10; p. 558
Main Authors Chen, Feixiong, Kim, Soyeon, Na, Jun-Hee, Han, Kyudong, Lee, Tae Yoon
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.10.2020
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A single-tube method based on a dual-electrostatic interaction (EI) strategy for bacteria capture and DNA extraction was designed to enable the highly sensitive detection of nucleic acids. Specially designed magnetic nanoparticles were developed to meet the opposing requirements of a single-tube method, which exist between the strong EI required for efficient bacteria capture and the weak EI required for DNA extraction with minimal DNA adsorption. A dual-EI strategy for the single-tube (DESIGN) method was thus developed to integrate bacteria enrichment, bacteria cell lysis, and DNA recovery in a single tube, thereby minimizing precious sample loss and reducing handling time. Subsequently, we evaluated the performance with a variety of concentrations from 5 to 100 colony-forming units (CFU)/10 mL human urine and milk samples. The DESIGN method achieved the simple and sensitive detection of Salmonella enterica serovar Typhimurium in 10 mL of human urine and milk samples up to 5 CFU by quantitative PCR. Furthermore, the DESIGN method detected Brucella ovis and Escherichia coli from 10 mL of human urine with a detection limit up to 5 CFU/10 mL. Graphical abstract
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0026-3672
1436-5073
DOI:10.1007/s00604-020-04536-9