Combined sphere-spheroid particle model for the retrieval of the microphysical aerosol parameters via regularized inversion of lidar data

In this work we propose a two-step advancement of the Mie spherical-particle model accounting for particle non-sphericity. First, a naturally two-dimensional (2D) generalized model (GM) is made, which further triggers analogous 2D re-definitions of microphysical parameters. We consider a spheroidal-...

Full description

Saved in:
Bibliographic Details
Published inEPJ Web of conferences Vol. 119; p. 23022
Main Authors Samaras, Stefanos, Böckmann, Christine, Nicolae, Doina
Format Journal Article Conference Proceeding
LanguageEnglish
Published Les Ulis EDP Sciences 01.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this work we propose a two-step advancement of the Mie spherical-particle model accounting for particle non-sphericity. First, a naturally two-dimensional (2D) generalized model (GM) is made, which further triggers analogous 2D re-definitions of microphysical parameters. We consider a spheroidal-particle approach where the size distribution is additionally dependent on aspect ratio. Second, we incorporate the notion of a sphere-spheroid particle mixture (PM) weighted by a non-sphericity percentage. The efficiency of these two models is investigated running synthetic data retrievals with two different regularization methods to account for the inherent instability of the inversion procedure. Our preliminary studies show that a retrieval with the PM model improves the fitting errors and the microphysical parameter retrieval and it has at least the same efficiency as the GM. While the general trend of the initial size distributions is captured in our numerical experiments, the reconstructions are subject to artifacts. Finally, our approach is applied to a measurement case yielding acceptable results.
Bibliography:ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
ISSN:2100-014X
2101-6275
2100-014X
DOI:10.1051/epjconf/201611923022