Scan blindness phenomenon in conformal finite phased arrays of printed dipoles
Scan blindness phenomenon for finite phased arrays of printed dipoles on material coated, electrically large circular cylinders is investigated. Effects on the scan blindness mechanism of several array and supporting structure parameters, including curvature effects, are observed and discussed. A fu...
Saved in:
Published in | IEEE transactions on antennas and propagation Vol. 54; no. 6; pp. 1699 - 1708 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.06.2006
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Scan blindness phenomenon for finite phased arrays of printed dipoles on material coated, electrically large circular cylinders is investigated. Effects on the scan blindness mechanism of several array and supporting structure parameters, including curvature effects, are observed and discussed. A full-wave solution, based on a hybrid method of moments/Green's function technique in the spatial domain, is used to achieve the aforementioned goals. Numerical results show that the curvature affects the surface waves and hence the mutual coupling between array elements. As a result, the array current distribution of arrays mounted on coated cylinders are considerably different compared to similar arrays on planar platforms. Therefore, finite phased arrays of printed dipoles on coated cylinders show different behavior in terms of scan blindness phenomenon compared to their planar counterparts. Furthermore, this phenomenon is completely different for axially and circumferentially oriented printed dipoles on coated cylinders suggesting that particular element types might be important for cylindrical arrays. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0018-926X 1558-2221 |
DOI: | 10.1109/TAP.2006.875482 |